

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

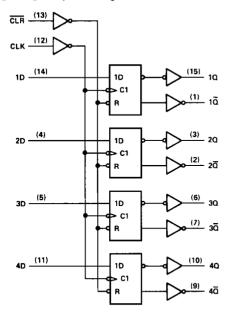
Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

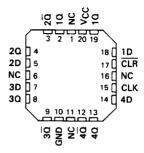

- Contains Four Flip-Flops with Double Rail Outputs
- . Buffered Clock and Clear Inputs
- Individual Data Inputs to Each Flip-Flop

description

These monolithic, positive-edge triggered flip-flops utilize the latest low-power Schottky circuitry to implement D-type flip-flop logic. They have a direct clear input and complementary outputs from each flip-flop.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

logic diagram (positive logic)

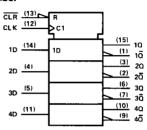


Pin numbers shown are for D, J, N, and W packages.

SN54LS171 . . . J OR W PACKAGE SN74LS171 . . . D OR N PACKAGE (TOP VIEW)

	_	
10	Q١	U ₁₆ VCC
20	□2	15 🗍 10
2Q	[]₃	14 🗌 1 D
2D	[]4	13 CLR
3D	□ 5	12 CLK
3Q	∏ 6	11 🗍 4D
3 <u>0</u>	□7	10 🛮 40
GND	Пs	9 h 4 a

SN54LS171 . . . FK PACKAGE (TOP VIEW)

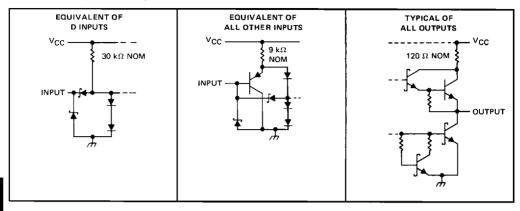


NC-No internal connection

FUNCTION TABLE

INPUTS			OUTPUTS				
CLR	CLK	D	<u>a</u> <u>a</u>				
L	Х	X	L	Н			
н	t	Н	н	L			
н	1	L	L	Н			
н	L	X	an	\overline{a}_0			

logic symbol†



¹This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

PRODUCTION DATA documents contain information current as of publication dete. Products conform to specifications per the terms of Texas Instruments standerd warranty. Production processing does not necessarily include testing of all parameters.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (See Note 1)	• • • • • • • • • • • • • • • • • • • •	7 V
Operating free-air temperature range:	SN54LS171 Circuits	
	SN74LS171 Circuits	0°C to 70°C
Storage temperature range		65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			S	SN54LS171		SN74LS171			l	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	V	
VIH	High-level input voltage		2			2			V	
VIL	Low-level input voltage				0.7			8.0	V	
ЮН	High-level output current				- 0.4			- 0.4	mΑ	
lOL	Low-level output current				4			8	mA	
fclock	Clock frequency		0		20	0		20	MHz	
t _W	Width of clock or clear pulse		20			20			ns	
	Setup time	Data input	20			20				
^E su	Setup time	Clear inactive-state	25			25			ns	
th	Data hold time		5			5			ns	
TA	Operating free-air temperature		55		125	0		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEGT CONDITIONS!		SN54LS171			SN74LS171			UNIT	
	PARAMETER	TEST CONDITIONS†			MIN	TYP‡	MAX	MIN	TYP‡	MAX	ONT
VIK	Input clamp voltage	V _{CC} = MIN,	I _I = - 18 mA				1.5			- 1.5	V
VОН	High-level output voltage	V _{CC} = MIN,	V _{IH} = 2 V,	I _{OH} ≈ – 1 mA	2.5	3.4		2.7	3 4		٧
	Low-level output	V _{CC} = MIN,	·			0.25	0.4		0.25	04	V
VOL	voltage	VIL = MAX		I _{OL} = 8 mA					0.35	0.5	V
ΙĮ	Input current at maximum input voltage	V _{CC} = MAX,	V _{CC} = MAX, V _I = 7 V				0.1			0.1	mA
ΉΗ	High-level input current	V _{CC} = MAX,	V _{CC} = MAX, V ₁ = 2.7 V				20			20	μА
ЧL	Low-level D inputs	Vcc = MAX,	V _{CC} = MAX, V _I = 0.4 V			•	- 0.4 - 0.2			- 0.4 0.2	mA mA
	current All others						→ U.Z			U.2	MA
los\$	Short-circuit output current	V _{CC} = MAX,	V _{CC} = MAX, V _O = 0 V		- 20		100	- 20		100	mA
Icc	Supply current	V _{CC} = MAX,	See Note 1		<u>L</u>	14	25		14	25	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 1. ${}^{1}_{CC}$ is measured with all inputs grounded and all outputs open.

switching characteristics, VCC = 5 V, TA = 25°C (see note 2)

	FROM TO					'L\$171			
PARAMETER	(INPUT)	(OUTPUT)	TEST CONDIT	MIN	TYP	MAX	UNIT		
fmax					20	30		MHz	
^t PLH	0.14	α, α		C _L = 15 pF		15	25	ns	
[†] PHL	CLK	α, α	$R_L = 2 k\Omega$,			18	30	ns	
tPLH		_				18	30	ns	
tPHL	CLR	a				24	40	ns	

NOTE 2. Load circuits and voltage waveforms are shown in Section 1

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ} \text{C}$.

[§] Not more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second.