

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

SN54LS295B, SN74LS295B 4-BIT RIGHT-SHIFT LEFT-SHIFT REGISTERS

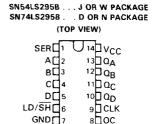
'LS295B Offers Three Times the Sink-Current Capability of 'LS295A

- Schottky-Diode-Clamped Transistors
- . Low Power Dissipation . . . 80 mW Typical (Enabled)
- Applications:

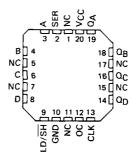
N-Bit Serial-To-Parallel Converter N-Bit Parallel-To-Serial Converter N-Bit Storage Register

description

These 4-bit registers feature parallel inputs, parallel outputs, and clock (CLK), serial (SER), mode (LD/SH), and outputs control (OC) inputs. The registers have three modes of operation:

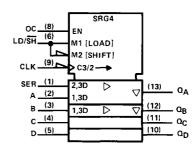

Parallel (broadside) load Shift right (the direction QA toward QD) Shift left (the direction QD toward QA)

Parallel loading is accomplished by applying the four bits of data and taking the mode control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-low transition of the clock input. During parallel loading, the entry of serial data is


Shift right is accomplished when the mode control is low; shift left is accomplished when the mode control is high by connecting the output of each flip-flop to the parallel input of the previous flip-flop (QD to input C, etc.) and serial data is entered at input D.

When the output control is high, the normal logic levels of the four outputs are available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a low logic level at the output control input. The outputs then present a high impedance and neither load nor drive the bus line; however, sequential operation of the registers is not affected.

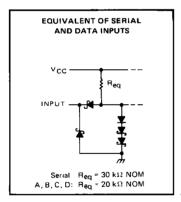
The SN54LS295B is characterized for operation over the full military temperature range of -55°C to 125°C; the SN74LS295B is characterized for operation from 0°C to 70°C.

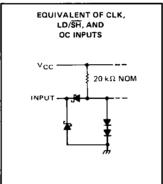


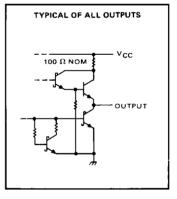
SN54LS295B . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

logic symbol†


[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12


Pin numbers shown are for D, J, N, and W packages.


Devices

Pin numbers shown are for D, J. N, and W packages

schematics of inputs and outputs

SN54LS295B, SN74LS295B 4-BIT RIGHT-SHIFT LEFT-SHIFT REGISTERS WITH 3-STATE OUTPUTS

FUNCTION TABLE

INPUTS								OUT	PUTS	
LD/SH	CLK	SER		PARA	LLEL					
LU/SH	CLK	SER	Α	В	C	D	QA	σB	αc	ΦD
Н	Н	×	X	X	X	X	QAO	QBO	QC0	Q _{D0}
н	‡	x	a	b	c	d	a	b	C	d
н	1	×	QBt	$q_{C^{\dagger}}$	$a_{D}t$	d	αgn	Q_{Cn}	\mathbf{q}_{Dn}	d
L	н	x	×	×	X	Х	QAO	σ_{B0}	σ^{co}	σ^{D0}
L	Ţ	н	×	X	Х	Х	H	Q_{An}	α_{Bn}	Q_{Cn}
L	↓	L	×	X	x	х	L	Q_{An}	α_{Bn}	α_{Cn}

When the output control is low, the outputs are disabled to the high-impedance state; however, sequential operation of the registers is not affected.

a, b, c, d = the level of steady-state input at inputs A, B, C, or D, respectively.

QAO, QBO, QCO, QDO = the level of QA, QB, QC, or QD, respectively, before the indicated steady-state input conditions were established.

QAn, QBn, QCn, QDn = the level of QA, QB, QC, or QD, respectively, before the most recent 1 transition of the clock.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)			 				7	V
Input voltage			 				7	٧
Operating free-air temperature range: SN54LS2958	3.		 				-55°C to 125°	,C
SN74LS295E	} .		 				0°C to 70°	,C
Storage temperature range			 	 			-65°C to 150°	,C

NOTE 1. Voltage values are with respect to network ground terminal.

recommended operating conditions

			SI	SN54LS295B			SN74LS295B			
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
ν _{cc}	Supply voltage		4.5	5	5.5	4.75	5	5.25	V	
JOH	High-level output current				– 1			- 2.6	mA	
lOL	Low-level output current				12			24	mA	
f _{clock}	Clock frequency		0		30	0		30	MHz	
tw(clock)	Width of clock pulse		16			16			ns	
t _{su}	Setup time, high-level or low-level data		20			20			ns	
•	Setup time, LD/SH to CLK	high-level	25			25				
^t su	Setup time, ED/SH to CER	low-level	30			30			ns	
th	Hold time, high-level or low-level data		20			20			ns	
th	Hold time, high-level or low-level LD/SH to CLK		0			0			ns	
TA	Operating free-air temperature		- 55		125	0		70	°c	

 $^{^\}dagger$ Shifting left requires external connection of Q_B to A, Q_C to B, and Q_D to C. Serial data is entered at input D.

H = high level (steady state), L = low level (steady state), X = irrelevant (any input, including transitions)

I = transition from high to low level.

SN54LS295B, SN74LS295B 4-BIT RIGHT-SHIFT LEFT-SHIFT REGISTERS WITH 3-STATE OUTPUTS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETER		TEST CONDITIONS [†]			SN	54LS29	5B	SN	UNIT		
	PARAMETER	165	TEST CONDITIONS.					MIN	TYP‡	MAX	UNIT
ViH	High-level input voltage				2			2			٧
VIL	Low-level input voltage						0.7			8.0	V
Vik	Input clamp voltage	VCC = MIN,	I _I = -18 mA				-1.5			-15	~
∨он	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = MAX		2.4	3.4		2.4	3.1		V
V	l - l-	VCC = MIN,	V _{IH} ≈ 2 V,	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	. v
\ vor	Low-level output voltage	V _{IL} = V _{IL} ma×		I _{OL} = 24 mA					0.35	0.5	·
	Off-state output current,	V _{CC} = MAX,	VIL = VIL max				20			20	μА
lozh	high-level voltage applied	V _O = 2.7 V					20			20	μΑ.
	Off-state output current,	V _{CC} = MAX,	V _{IH} = 2 V,				-20			-20	μА
lozL	low-level voltage applied	V _O = 0.4 V					-20			-20	μ^
1.	Input current at	Vcc = MAX,	V1 = 7 V				0.1			0.1	mA
li li	maximum input voltage	VCC - MAA,	V - / V				0.1			0.1	
ΉΗ	High-level input current	V _{CC} = MAX,	V ₁ = 2.7 V				20			20	μА
11L	Low-level input current	V _{CC} = MAX,	V _I = 0 4 V				-0 4			0 4	mA
los	Short-circuit output current §	V _{CC} = MAX			-30		-130	-30		-130	mA
1	Complex assessment	.,	See Note 2	Condition A		20	29		20	29	mA
¹cc	Supply current	V _{CC} = MAX,	See NOTE 2	Condition B		22	33		22	33	

†For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡All typical values are at V_{CC} = 5 V, T_A = 25°C.

Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second

- NOTE 2. I_{CC} is measured with the outputs open, the serial input and mode control at 4.5 V, and the data inputs grounded under the following conditions.
 - A. Output control at 4.5 V and a momentary 3 V, then ground, applied to clock input.
 - B. Output control and clock input grounded.

switching characteristics, V_{CC} = 5 V, T_A = 25 C, R_L = 667 Ω

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max} Maximum clock frequency		30	45		MHz
tPLH Propagation delay time, low-to-high-level output	C. v. AE n.E.		14	20	ns
tphL Propagation delay time, high-to-low-level output	CL = 45 pF,		19	30	ns
tpZH Output enable time to high level	See Note 3		18	26	ns
tpzL Output enable time to low level			20	30	ns
TPHZ Output disable time from high level	C _L = 5 pF,		13	20	ns
tPLZ Output disable time from low level	See Note 3		13	20	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1

