

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

HI-546, HI-547, HI-548, HI-549

Single 16 and 8, Differential 8-Channel and 4-Channel CMOS Analog MUXs with Active Overvoltage Protection

August 1997

Features

Analog Overvoltage Protection 70Vp.p

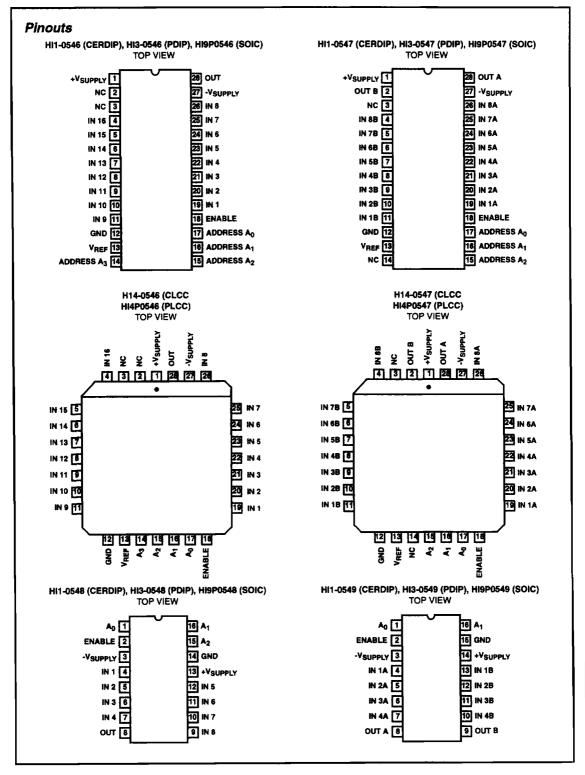
- · No Channel Interaction During Overvoltage
- · Guaranteed ron Matching
- 44V Maximum Power Supply
- · Break-Before-Make Switching
- Analog Signal Range..... ±15V
- Standby Power (Typical)7.5mW

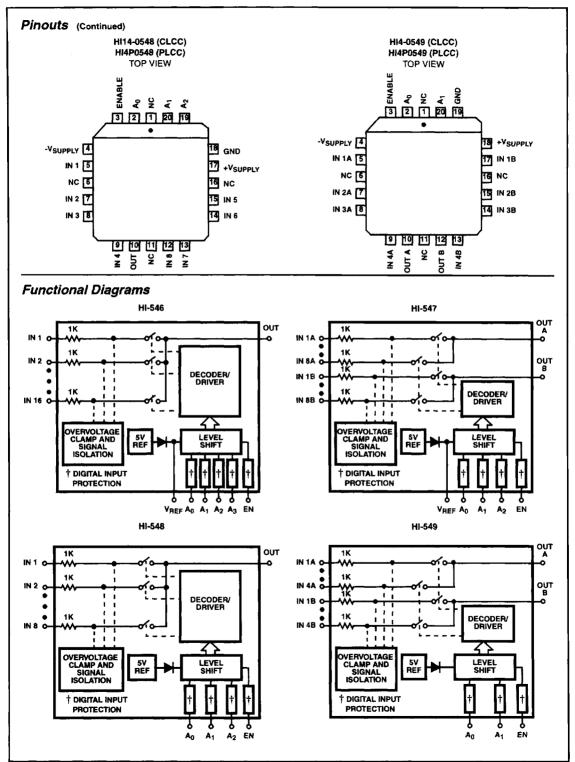
Applications

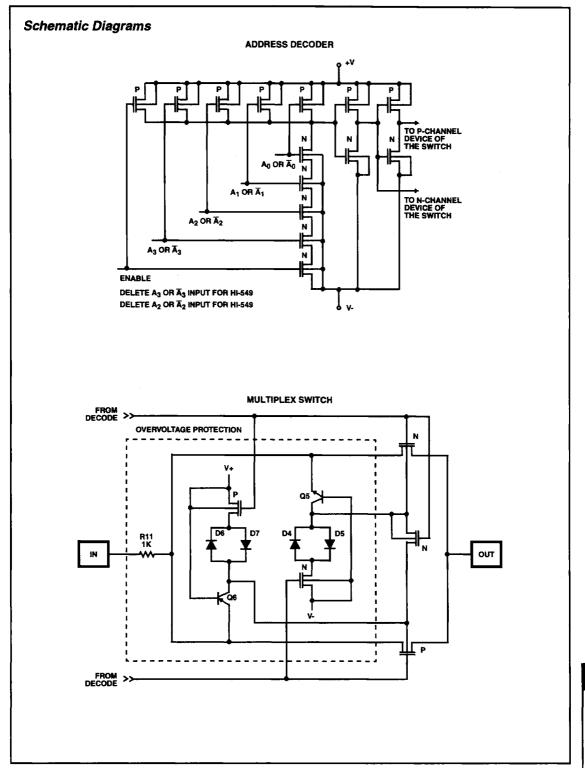
- · Data Acquisition
- Industrial Controls
- Telemetry

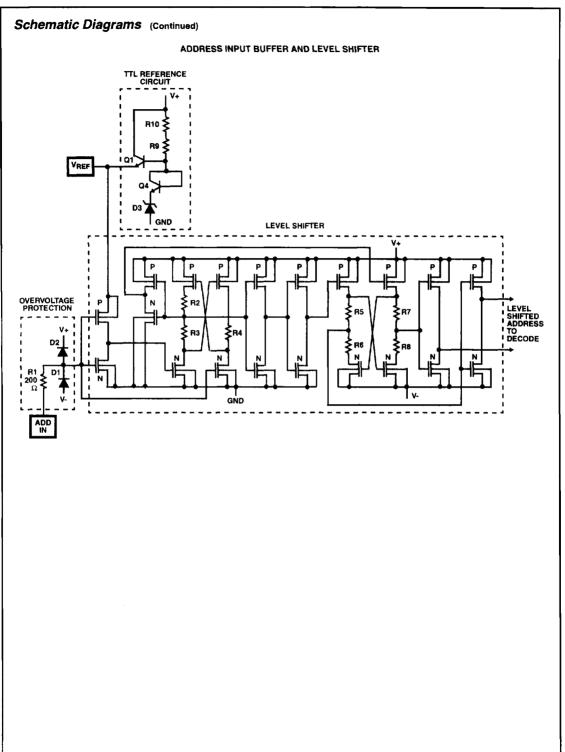
Description

The HI-546, HI-547, HI-548 and HI-549 are analog multiplexers with active overvoltage protection and guaranteed r_{ON} matching. Analog input levels may greatly exceed either power supply without damaging the device or disturbing the signal path of other channels. Active protection circuitry assures that signal fidelity is maintained even under fault conditions that would destroy other multiplexers.


Analog inputs can withstand constant 70Vp-p levels with ±15V supplies. Digital inputs will also sustain continuous faults up to 4V greater than either supply. In addition, signal sources are protected from short circuiting should multiplexer supply loss occur. Each input presents 1k Ω of resistance under this condition. These features make the HI-546, HI-547, HI-548 and HI-549 ideal for use in systems where the analog inputs originate from external equipment or separately powered circuitry. All devices are fabricated with 44V Dielectrically Isolated CMOS technology. The HI-546 is a single 8-Channel and the HI-547 is an 8-Channel differential device. If input overvoltage protection is not needed the HI-506/507/508/509 multiplexers are recommended. For further information see Application Notes AN520 and AN521. The HI-546 and HI-547 devices are available in a 28 lead Plastic or Ceramic DIP and a 28 pad Ceramic DIP and a 20 pad Ceramic DIC package.


The HI-546, HI-547, HI-548 and HI-549 are offered in industrial/commercial and military grades. Additional Hi-Rel screening including 160 hour Burn-In is specified by the "-8" suffix. For MIL-STD-883 compliant parts, request the HI-546/883, HI-547/883, HI-548/883 and HI-549/883 datasheets.


PART NUMBER	TEMP. RANGE (^o C)	PACKAGE	PKG. NO.	PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. NO.
HI1-0546-4	-25 to 85	28 Ld CERDIP	F28.6	HI1-0548-2	-55 to 125	16 Ld CERDIP	F16.3
HI1-0546-5	0 to 75	28 Ld CERDIP	F28.6	HI1-0548-4	-25 to 85	16 Ld CERDIP	F16.3
HI1-0546-2	-55 to 125	28 Ld CERDIP	F28.6	HI1-0548-5	0 to 75	16 Ld CERDIP	F16.3
HI1-0546/883	-55 to 125	28 Ld CERDIP	F28.6	HI1-0548/883	-55 to 125	16 Ld CERDIP	F16.3
HI3-0546-5	0 to 75	28 Ld PDIP	E28.6	HI3-0548-5	0 to 75	16 Ld PDIP	E16.3
HI3-0546-9	-40 to 85	28 Ld PDIP	E28.6	HI4-0548/883	-55 to 125	20 Ld CLCC	J20.A
HI4-0546/883	-55 to 125	28 Ld CLCC	J28.A	HI4P0548-5	0 to 75	20 Ld PLCC	N20.35
HI4P0546-5	0 to 75	28 Ld PLCC	N28.45	HI9P0548-5	0 to 75	16 Ld SOIC	M16.15
HI9P0546-5	0 to 75	28 Ld SOIC	M28.3	HI9P0548-9	-40 to 85	16 Ld SOIC	M16.15
HI9P0546-9	-40 to 85	28 Ld SOIC	M28.3	HI1-0549-2	-55 to 125	16 Ld CERDIP	F16.3
HI1-0547-2	-55 to 125	28 Ld CERDIP	F28.6	HI1-0549-4	-25 to 85	16 Ld CERDIP	F16.3
HI1-0547-4	-25 to 85	28 Ld CERDIP	F28.6	HI1-0549-5	0 to 75	16 Ld CERDIP	F16.3
HI1-0547-5	0 to 75	28 Ld CERDIP	F28.6	HI1-0549/883	-55 to 125	16 Ld CERDIP	F16.3
HI1-0547/883	-55 to 125	28 Ld CERDIP	F28.6	HI3-0549-5	0 to 75	16 Ld PDIP	E16.3
HI3-0547-5	0 to 75	28 Ld PDIP	E28.6	HI3-0549-9	-40 to 85	16 Ld PDIP	E16.3
HI4-0547/883	-55 to 125	28 Ld CLCC	J28.A	HI4-0549/883	-55 to 125	20 Ld CLCC	J20.A
HI4P0547-5	0 to 75	28 Ld PLCC	N28.45	HI4P0549-5	0 to 75	20 Ld PLCC	N20.35
HI9P0547-5	0to 75	28 Ld SOIC	M28.3	HI9P0549-5	0 to 75	16 Ld SOIC	M16.15
HI9P0547-9	-40 to 85	28 Ld SOIC	M28.3	HI9P0549-9	-40 to 85	16 Ld SOIC	M16.15


Ordering Information

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures. Copyright © Harris Corporation 1997

Absolute Maximum Ratings

VSUPPLY(+) to VSUPPLY(-) · · · · · · · · · · · · · · · · · · ·
V _{SUPPLY(+)} to GND +22V
VSUPPLY(-) to GND
Digital Input Overvoltage
+VEN, +VA +VSUPPLY +4V
-VEN, -VA
or 20mA, Whichever Occurs First
Analog Signal Overvoltage (Note 6)
+VS+VSUPPLY +20V
-V _S V _{SUPPLY} -20V
Continuous Current, S or D
Peak Current, S or D
(Pulsed at 1ms, 10% Duty Cycle Max)
Operating Conditions

Operating Temperature Ranges

HI-546/547/548/549-2	55°C to 125°C
HI-546/547/548/549-4	
HI-546/547/548/549-5	
HI-546/547/548/549-9	

Thermal Information

Thermal Resistance (Typical, Note 1) 16 Ld CERDIP Package 28 Ld CERDIP Package 20 Ld CLCC Package 28 Ld CLCC Package 28 Ld PDIP Package 28 Ld SOIC Package 28 Ld SOIC Package 28 Ld SOIC Package	. 55 . 80 . 70 . 60 . 100 . 70 . 80 . 70	θ _{JC} (⁰ C/W) 32 18 28 20 N/A N/A N/A N/A N/A N/A
Maximum Junction Temperature Ceramic Package Plastic Package Maximum Storage Temperature Range Maximum Lead Temperature (Soldering 10 (PLCC, SOIC - Lead Tips Only)		150°C 5°C to 150°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications	Supplies = +15V, -15V; V _{REF} Pin = Open; V _{AH} (Logic Level High) = +4V; V _{AL} (Logic Level Low) = +0.8V;
	Unless Otherwise Specified. For Test Conditions, Consult Performance Curves

	TEST	TEMP	HI-54X-2			HI-54X-4, -5, -9				
PARAMETER	CONDITIONS		MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS	
SWITCHING CHARACTERISTICS										
Access Time, t _A		25	-	0.5	-	•	0.5	-	μs	
		Full	-		1.0	-	-	1.0	μs	
Break-Before Make Delay, tOPEN		25	25	80		25	80	-	ns	
Enable Delay (ON), t _{ON(EN)}		25	-	300	500	-	300	•	ns	
		Full	•		1000	-	-	1000	ns	
Enable Delay (OFF), t _{OFF(EN)}		25	-	300	500	-	300	•	ns	
		Fuli	-	•	1000	-	•	1000	ns	
Settling Time (0.1%)		25	-	1.2	-		1.2	-	μs	
(0.01%)		25	-	3.5	-	-	3.5		μs	
"Off Isolation"	Note 5	25	50	68	-	50	68	•	dB	
Channel Input Capacitance, CS(OFF)		25	-	5		•	5	-	pF	
Channel Output Capacitance C _{D(OFF)} HI-546		25	-	52	-	-	52		pF	
HI-547	1	25		30			30		pF	
Hi-548	1	25		25	-	-	25		pF	
HI-549	1	25		12	-	-	12	-	рF	
Input to Output Capacitance, CDS(OFF)		25	-	0.1	-	-	0.1	-	pF	
DIGITAL INPUT CHARACTERISTICS							•	I	•	
Input Low Threshold, TTL Drive, VAL		Full	-		0.8	-	-	0.8	v	

HI-546, HI-547, HI-548, HI-549

Electrical Specifications Supplies = +15V, -15V; V_{REF} Pin = Open; V_{AH} (Logic Level High) = +4V; V_{AL} (Logic Level Low) = +0.8V; Unless Otherwise Specified. For Test Conditions, Consult Performance Curves (Continued)

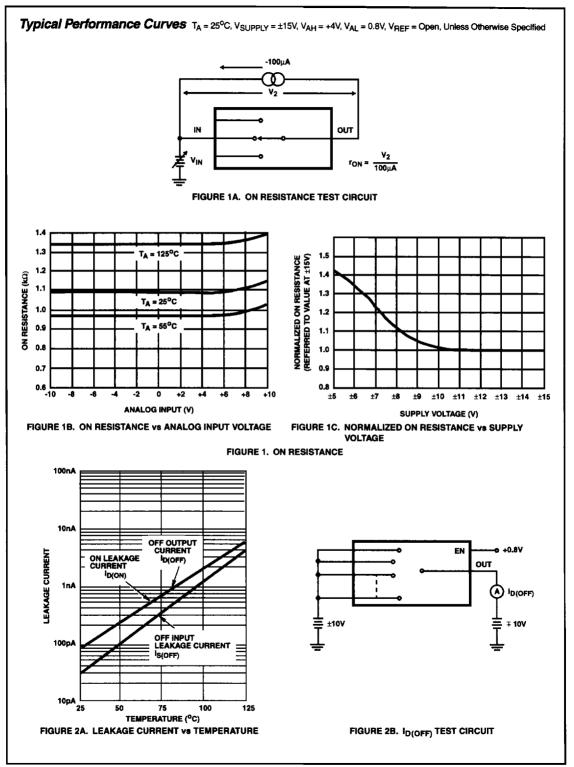
	TEST	TEMP	HI-54X-2			HI-54X-4, -5, -9			
PARAMETER	CONDITIONS	(°C)	MIN	TYP	MAX	MIN	ТҮР	MAX	UNITS
Input High Threshold, VAH	Note 7	Full	4.0	-	-	4.0	-	-	v
MOS Drive (HI-546/547 Only), VAL	Note 8	25	-	-	0.8	-	-	0.8	٧
MOS Drive (HI-546/547 Only), VAH	Note 8	25	6.0	-	-	6.0	-	-	v
Input Leakage Current (High or Low), IA	Note 4	Full	•	-	1.0	-	· ·	1.0	μA
ANALOG CHANNEL CHARACTERISTIC	s								
Analog Signal Range, V _S		Full	-15	-	+15	-15	-	+15	v
On Resistance, r _{ON}	Note 1	25	-	1.2	1.5	-	1.5	1.8	kΩ
		Full	-	1.5	1.8	-	1.8	2.0	kΩ
Δr _{ON} , (Any Two Channels)		25	-	-	7.0	-	-	7.0	%
Off Input Leakage Current, IS(OFF)	Note 2	25	-	0.03	-	-	0.03	· ·	nA
		Full	-	-	50	-	-	50	nA
Off Output Leakage Current, ID(OFF)	Note 2	25	-	0.1	-	-	0.1	· ·	nA
HI-546		Full	-	-	300	-	-	300	nA
HI-547	1	Full	-	-	200	-	-	200	nA
HI-548		Full	-	-	200	-	-	200	nA
HI-549		Full	-	-	100	-	-	100	nA
With Input Overvoltage Applied, ID(OFF)	Note 3	25	-	4.0		-	4.0	-	nA
		Full	-	-	2.0	-	•	-	μA
On Channel Leakage Current, ID(ON)	Note 2	25	-	0.1	•	-	0.1	•	nA
HI-546		Full	-	-	300	-	-	300	nA
HI-547		Full	-	· ·	200	-	-	200	nA
HI-548		Full	-	•	200	-	-	200	nA
HI-549]	Full	-		100	-		100	nA
Differential Off Output Leakage Current (HI-547, HI-549 Only), IDIFF		Full		-	50	-	-	50	nA
POWER REQUIREMENTS									
Power Dissipation, PD		Full	-	7.5	-	-	7.5	-	mW
Current, I+	Note 6	Full	-	0.5	2.0	-	0.5	2.0	mA
Current, I-	Note 6	Full	-	0.02	1.0	-	0.02	1.0	mA

NOTES:

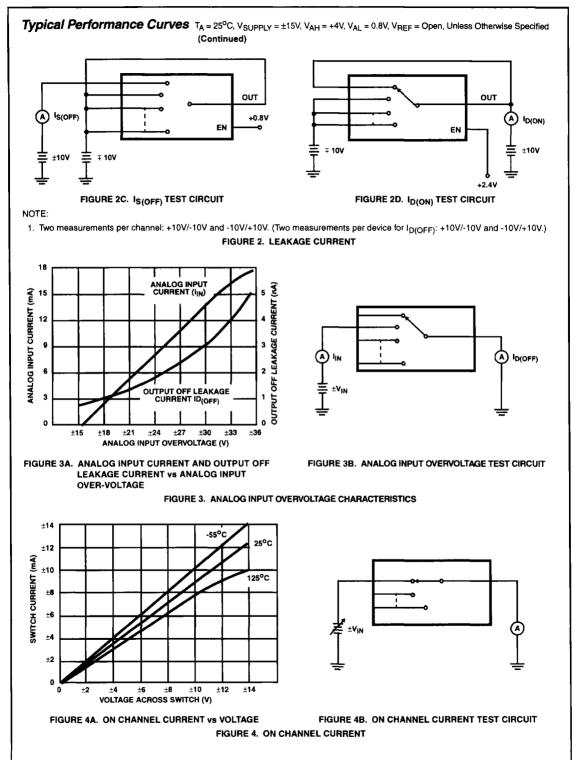
1. $V_{OUT} = \pm 10V$, $I_{OUT} = \mp 100\mu A$.

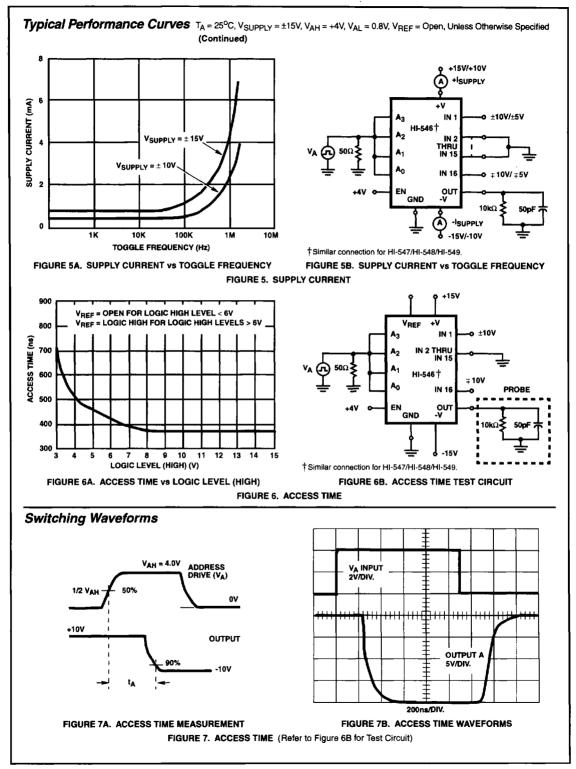
2. 10nA is the practical lower limit for high speed measurement in the production test environments.

3. Analog Overvoltage = ±33V.

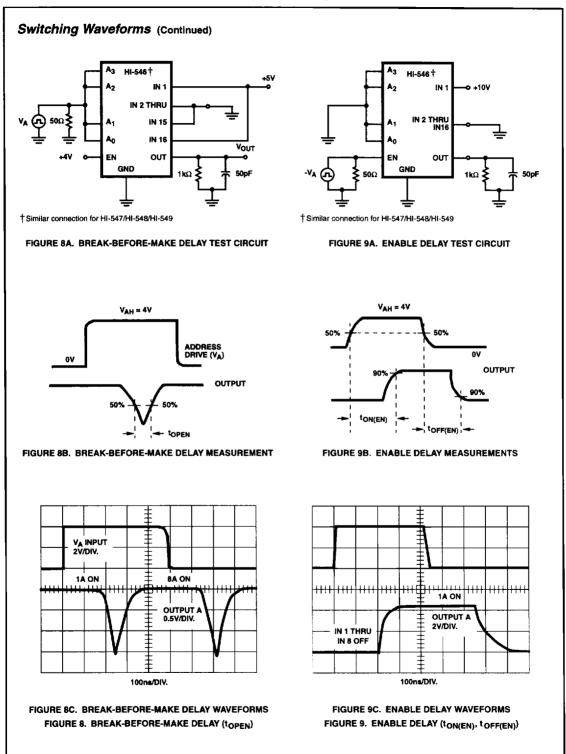

4. Digital input leakage is primarily due to the clamp diodes (see Schematic). Typical leakage is less than 1nA at 25°C.

5. $V_{EN} = 0.8V$, $R_L = 1K$, $C_L = 15pF$, $V_S = 7V_{RMS}$, f = 100kHz.


6. V_{EN} , $V_A = 0V$ or 4V.


7. To drive from DTL/TTLCircuits, $1k\Omega$ pull-up resistors to +5V_{SUPPLY} are recommended.

8. $V_{REF} = +10V.$



MULTIPLEXERS

MULTIPLEXERS

HI-546, HI-547, HI-548, HI-549

Truth Tables

HI-546							
A ₃	A ₂	A ₁	A ₀	EN	"ON" CHANNEL		
x	х	х	х	L	None		
L	L	L	L	н	1		
L	L	L	н	н	2		
L	L	Н	L	н	3		
L	L	н	н	н	4		
L	н	L	L	Н	5		
L	н	L	н	Н	6		
L	н	н	L	н	7		
L	н	н	н	н	8		
н	L	L	L	н	9		
н	L	L	н	н	10		
н	L	н	L	н	11		
н	L	н	н	н	12		
н	н	L	Ĺ	н	13		
н	н	L	н	н	14		
н	н	н	L	н	15		
н	н	н	н	н	16		

A₂ \mathbf{A}_1 A₀ EN "ON" CHANNEL Х х х L None L L L н 1 н L L н 2 н 3 L L н н н L н 4 н L L н 5 н L н н 6 н L н н 7 н н н н 8

HI-549

A1	Ao	EN	"ON" CHANNEL PAIR
х	х	L	None
L	L	н	1
L	Н	н	2
н	L	н	3
н	н	н	4

HI-547

A2	A ₁	Ao	EN	"ON" CHANNEL PAIR
x	x	х	L	None
L	L	L	н	1
L	L	н	н	2
L	н	L	н	3
L	н	н	н	4
н	L	L	н	5
н	L	н	н	6
н	н	Ļ	н	7
Н	н	н	н	8

11

HI-548

Die Characteristics

DIE DIMENSIONS:

83.9 mils x 159 mils x 19 mils

METALLIZATION:

Type: CuAl Thickness: 16kÅ ±2kÅ

SUBSTRATE POTENTIAL (NOTE):

-VSUPPLY

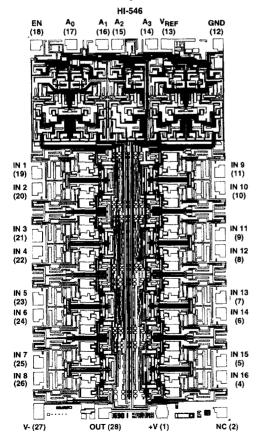
PASSIVATION:

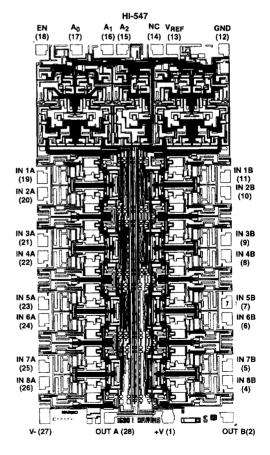
Type: Nitride Over Silox Nitride Thickness: 3.5kÅ ±1kÅ Silox Thickness: 12kÅ ±2kÅ

WORST CASE CURRENT DENSITY:

1.4 x 10⁵ A/cm²

TRANSISTOR COUNT:

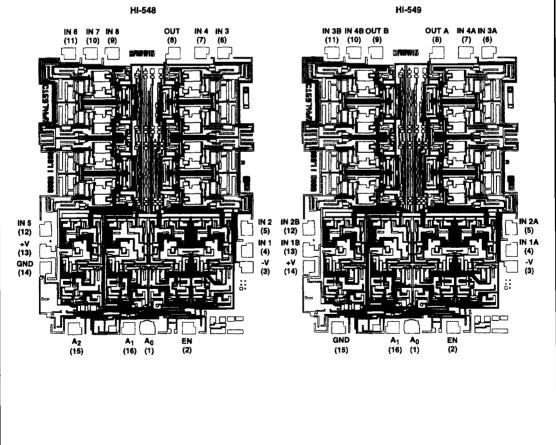

HI-546: 485 HI-547: 485


PROCESS:

CMOS-DI

NOTE: The substrate appears resistive to the -V_{SUPPLY} terminal, therefore it may be left floating (Insulating Die Mount) or it may be mounted on a conductor at -V_{SUPPLY} potential.

Metallization Mask Layouts


Die Characteristics

DIE DIMENSIONS:	WORST CASE CURRENT DENSITY:
83 mils x 108 mils x 19 mils	1.4 x 10 ⁵ A/cm
METALLIZATION:	TRANSISTOR COUNT:
Type: CuAl Thickness: 16kÅ ±2kÅ	HI-548: 253 HI-549: 253
SUBSTRATE POTENTIAL (NOTE):	PROCESS:
-VSUPPLY	CMOS-DI
PASSIVATION:	
Type: Nitride Over Silox	

Nitride Thickness: 3.5kÅ ±1kÅ Silox Thickness: 12kÅ ±2kÅ

NOTE: The substrate appears resistive to the -V_{SUPPLY} terminal, therefore it may be left floating (Insulating Die Mount) or it may be mounted on a conductor at -V_{SUPPLY} potential.

Metallization Mask Layouts

