FSTU3257 Quad 2:1 Multiplexer/Demultiplexer Bus Switch with –2V Undershoot Protection

FSTU3257 Quad 2:1 Multiplexer/Demultiplexer Bus Switch with -2V Undershoot Protection

General Description

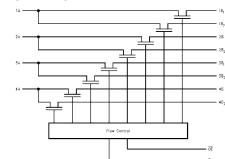
FAIRCHILD

SEMICONDUCTOR

The Fairchild Switch FSTU3257 is a quad 2:1 high-speed CMOS TTL-compatible multiplexer/demultiplexer bus switch. The low on resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise.

When $\overline{\text{OE}}$ is LOW, the select pin connects the A Port to the selected B Port output. The A and B Ports are "undershoot hardened" with Undershoot Hardened Circuit (UHC®TM) protection to support an extended range of 2.0V below ground. Fairchild's integrated UHC senses undershoot at the I/O and responds by preventing voltage differentials from developing and turning on the switch. When $\overline{\text{OE}}$ is HIGH, the switch is OPEN and a high-impedance state exists between the two ports.

Features


- Undershoot hardened to –2V (A and B Ports)
- Soft enable turn-on to minimize bus to bus charge
- sharing during enable
- 4Ω switch connection between two ports.
- Minimal propagation delay through the switch.
- Low I_{CC}.
- Zero bounce in flow-through mode.
- Control inputs compatible with TTL level.
- See Applications Note AN-5008 for details

Ordering Code:

Order Number	Package Number	Package Description
FSTU3257M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
FSTU3257QSC	MQA16	16-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide
FSTU3257MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Diagram

Connection Diagram

Truth Table

s X

L

н

				_
s —	1	\bigcirc	16	– v _{cc}
1 B ₁ —	2		15	- OE
1 B ₂ —	3		14	— 4 B ₁
1A —	4		13	— 4 B ₂
2B ₁ —	5		12	— 4A
2B ₂ —	6		11	— 3B ₁
2A —	7		10	— 3B ₂
GND —	8		9	— 3A

OE

Н

L

L

Pin Descriptions

Pin Name	Description
OE	Bus Switch Enable
S	Select Input
A	Bus A
B ₁ –B ₂	Bus B

UHC®™ is a registered trademark of Fairchild Semiconductor Corporation.

© 2005 Fairchild Semiconductor Corporation DS500302

www.fairchildsemi.com

Function

Disconnect

 $A = B_1$

 $A = B_2$

FSTU3257

Absolute Maximum Ratings(Note 1)

	-
Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Switch Voltage (V _S) (Note 2)	-2.0V to +7.0V
DC Input Control Pin Voltage (VIN)(Note 3)	-0.5V to +7.0V
DC Input Diode Current (I _{IK}) $V_{IN} < 0V$	-50mA
DC Output (I _{OUT})	128mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	+/- 100mA
Storage Temperature Range (T _{STG})	-65°C to +150 °C
ESD	
Human Body Model	5kV

Recommended Operating Conditions (Note 4)

1	Power Supply Operating (V_{CC})	4.0V to 5.5V
1	Input Voltage (V _{IN})	0V to 5.5V
L.	Output Voltage (V _{OUT})	0V to 5.5V
۱.	Input Rise and Fall Time (t_r, t_f)	
L.	Switch Control Input	0nS/V to 5nS/V
;	Switch I/O	0nS/V to DC
	Free Air Operating Temperature (T _A)	-40 °C to +85 °C

/ Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The Recommended Operating Conditions tables will define the conditions for actual device operation.

Note 2: V_S is the voltage observed/applied at either the A or B Ports across the switch.

Note 3: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 4: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

		V _{CC}	T _A =	-40 °C to +	85 °C			
Symbol	Parameter	(V)	Min	Typ (Note 5)	Max	Units	Conditions	
V _{IK}	Clamp Diode Voltage	4.5			-1.2	V	$I_{IN} = -18 mA$	
V _{IH}	HIGH Level Input Voltage	4.0-5.5	2.0			V		
VIL	LOW Level Input Voltage	4.0-5.5			0.8	V		
l _l	Input Leakage Current	5.5			±1.0	μA	0≤ V _{IN} ≤5.5V	
I _{OZ}	OFF-STATE Leakage Current	5.5			±1.0	μA	$0 \le A, B \le V_{CC}$	
R _{ON}	Switch On Resistance	4.5		4	7	Ω	$V_{IN} = 0V$, $I_{IN} = 64mA$	
	(Note 6)	4.5		4	7	Ω	$V_{IN} = 0V$, $I_{IN} = 30mA$	
		4.5		8	15	Ω	$V_{IN} = 2.4V, I_{IN} = 15mA$	
		4.0		11	20	Ω	$V_{IN} = 2.4V, I_{IN} = 15mA$	
I _{CC}	Quiescent Supply Current	5.5			3	μA	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$	
ΔI_{CC}	Increase in I _{CC} per Input	5.5			2.5	mA	One input at 3.4V	
							Other inputs at V _{CC} or GND	
V _{IKU}	Voltage Undershoot	5.5			-2.0	V	$0.0\ mA \geq I_{IN} \geq -50\ mA$	
							<u>OE</u> = 5.5V	

Note 5: Typical values are at $V_{CC}=5.0V$ and $T_{A}=+25^{\circ}C$

Note 6: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics

			_A = -40 °C 50pF, RU					Figure
Symbol	Parameter		50рг, ко .5 – 5.5V		= 4.0V	Units	Conditions	Figure No.
		Min	Max	Min	Мах			
t _{PHL} ,t _{PLH}	Prop Delay Bus to Bus (Note 7)		0.25		0.25	ns	V _I = OPEN	Figures
	Prop Delay, Select to Bus A	7.0	30.0		35.0	115		2, 3
$t_{\text{PZH}},t_{\text{PZL}}$	Output Enable Time, Select to Bus B	7.0	30.0		35.0		$V_I = 7V$ for t_{PZL}	Figures
	Output Enable Time, OE to Bus A, B	7.0	30.0		35.0	ns	$V_I = OPEN$ for t_{PZH}	2, 3
t _{PHZ} , t _{PLZ}	Output Disable Time, Select to Bus B	1.5	8.4		9.8		$V_I = 7V$ for t_{PLZ}	Figures
	Output Disable Time, Output Enable Time, OE to Bus A, B	1.5	8.8		9.8	ns	$V_I = OPEN$ for t_{PHZ}	2, 3

Note 7: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On resistance of the switch and the 50pF load capacitance, when driven by an ideal voltage the source (zero output impedance).

Capacitance (Note 8)

Symb	ol	Parameter	Тур	Max	Units	Conditions
CIN		Control Pin Input Capacitance	3		pF	$V_{CC} = 5.0V$
Cur	A Port	Input/Output Capacitance	7.5		pF	V _{CC} , <u>OE</u> = 5.0V
C _{I/O}	B Port		5.5		pF	$v_{CC}, OE = 5.0v$
CI/O ON State		Input/Output Capacitance ON State (A or B Port)	14		pF	V _{CC} = 5.0V Switch ON

f = 1 MHz, Capacitance is characterized but not tested. Note 8: T_A =

Undershoot Characteristic (Note 9)

Symbol	Parameter	Min	Тур	Max	Units	Conditions
V _{OUTU}	Output Voltage During Undershoot	2.5	V _{OH} – 0.3		V	Figure 1
Note 9: This is event.	intended to characterize the device's protectiv	e capabilities by	maintaining outp	out signal integrity	/ during an input	transient voltage undershoot

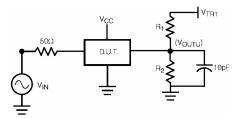
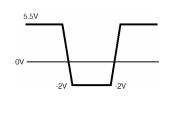
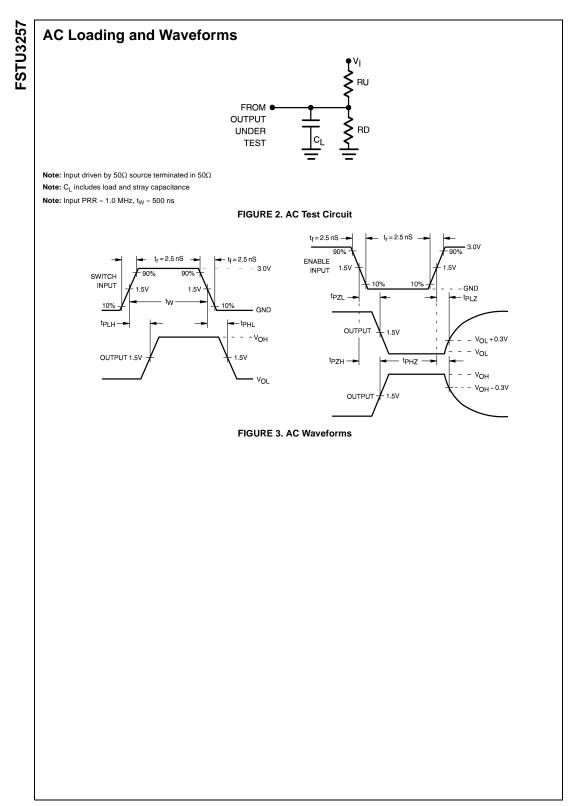
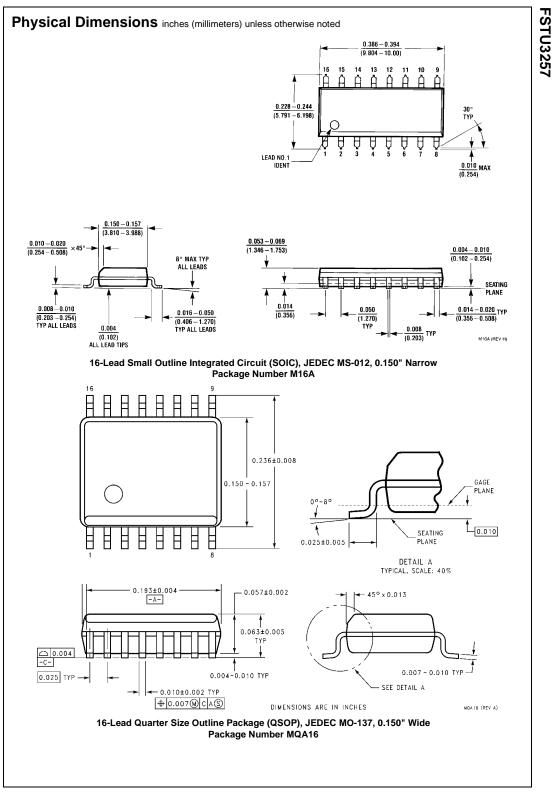



FIGURE 1.

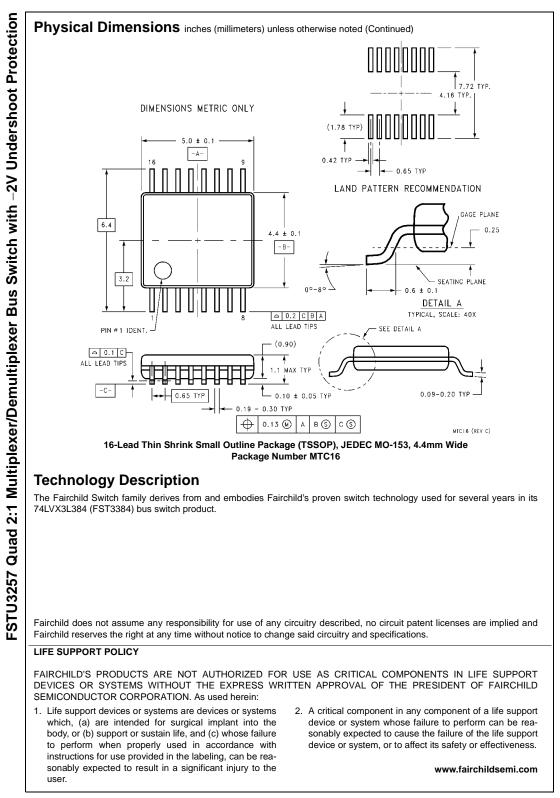
Device Test Conditions


Parameter	Value	Units
V _{IN}	See Waveform	V
R ₁ - R ₂	100K	Ω
V _{TRI}	11.0	V
V _{CC}	5.5	V

Transient Input Voltage (VIN) Waveform



www.fairchildsemi.com


FSTU3257

www.fairchildsemi.com

www.fairchildsemi.com

www.fairchildsemi.com