

CMOS OCTAL BUS *IDT74LVCC3245A* TRANSCEIVER WITH ADJUSTABLE OUTPUT VOLTAGE, 3-STATE OUT-PUTS, 5 VOLT TOLERANT I/O

FEATURES:

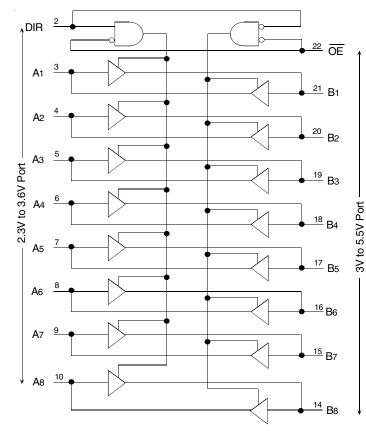
- 0.5 MICRON CMOS Technology
- VCCA = 2.3V to 3.6V
- VCCB = 3V to 5.5V
- CMOS power levels (0.4µ W typ. static)
- Rail-to-rail output swing for increased noise margin
- All inputs, outputs, and I/O are 5V tolerant
- Supports hot insertion
- Available in TSSOP package

DRIVE FEATURES:

- High Output Drivers: ±24mA
- · Reduced system switching noise

APPLICATIONS:

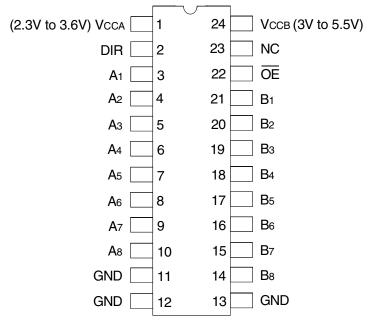
- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems


FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION:

The LVCC3245A is manufactured using advanced dual metal CMOS technology. This 8-bit (octal) noninverting bus transceiver contains two separate supply rails. The B port is designed to track VccB, which accepts voltages from 3V to 5.5V, and the A port is designed to track VccA, which operates at 2.3V to 3.6V. This allows for translation from a 3.3V to a 5V system environment and vice-versa, or from a 2.5V to a 3.3V system environment, and vice-versa.

This LVCC3245A is ideal for asynchronous communication between two data buses (A and B). The device transmits data from A to B or from B to A, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so the buses are effectively isolated.


The LVCC3245A has been designed with a \pm 24mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

FEBRUARY 2006

PINCONFIGURATION

TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS FOR VCCB OR VCCB⁽¹⁾

Symbol	Description	Max	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +6	V
Tstg	Storage Temperature	-65 to +150	°C
Ιουτ	DC Output Current	-50 to +50	mA
Іік Іок	Continuous Clamp Current, VI < 0 or Vo < 0	-50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	pF
Ci/o	I/O Port Capacitance	Vin = 0V	11	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description
ŌĒ	Output Enable Input (Active LOW)
DIR	Direction Control Input
Ax	Port A Inputs or 3-State Outputs
Вx	Port B Inputs or 3-State Outputs
NC	No Internal Connection

FUNCTION TABLE⁽¹⁾

Inj	outs	
OE DIR		Outputs
L	L	Bus B Data to Bus A
L	Н	Bus A Data to Bus B
Н	Х	High Z state

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (A PORT)

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^{\circ}C$ to $+85^{\circ}C$, VCCA = 2.3V to $3.6V^{(1)}$

Symbol	Parameter	Test	Conditions	Min.	Тур. ⁽²⁾	Max.	Unit
Vih	Input HIGH Voltage Level	Vob ≤ 0.1V	VCCA = 2.3V, VCCB = 3V	1.7	—	—	V
		VoB ≥ Vccb - 0.1V	VCCA = 2.7V to 3.6V	2	_	—	
Vil	Input LOW Voltage Level		VCCA = 2.3V, VCCB = 3V	_	_	0.7	V
			VCCA = 2.7V to 3.6V	_	_	0.8	
Ін	Input Leakage Current	Vcca = 3.6V	VI = 0 to 5.5V	-	-	±1	μA
lil							
lozн	High Impedance Output Current	VCCA = 3.6V	Vo = Vcca or GND	_	_	±5	μA
Iozl	(3-State Output pins)						
loff	Input/Output Power Off Leakage	VCCA = 0V, VIN or VO ≤ 5.5	VCCA = 0V, VIN or Vo $\leq 5.5V$		-	±50	μA
Vн	Input Hysteresis	VCCA = 3.3V		_	100	_	mV
ІССL ІССН ІССZ	Quiescent Power Supply Current	VCCA = 3.6V	VIN = GND or Vcc	-	-	50	μA
ΔICC	Quiescent Power Supply Current Variation	One input at VCCA - 0.6, othe	er inputs at VCCA or GND	-	-	500	μA

NOTES:

1. VCCB = 3V to 5.5V.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

3. This applies in the disabled state only.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (B PORT)

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CCB} = 3V$ to $5.5V^{(1)}$

Symbol	Parameter	Te	st Conditions	Min.	Тур. ⁽²⁾	Max.	Unit
Vih	Input HIGH Voltage Level	$VOA \le 0.1V$	VCCB = 3V to 3.6V	2	—	—	V
		Voa≥Vcca - 0.1V	VCCB = 5.5V	3.85	-	_	
VIL	Input LOW Voltage Level		VCCB = 3V to 3.6V	_	_	0.8	V
			VCCB = 5.5V	_	_	1.65	
Ін	Input Leakage Current	VCCB = 3.6V	VI = 0 to 5.5V		-	±1	μA
lı∟							
Іогн	High Impedance Output Current	VCCB = 3.6V	Vo = VCCB or GND		_	±5	μA
Iozl	(3-State Output pins)						
IOFF	Input/Output Power Off Leakage	VCCB = 0V, VIN or VO \leq	5.5V	_	_	±50	μA
Vн	Input Hysteresis	VCCB = 3.3V		_	100	_	mV
ICCL	Quiescent Power Supply Current	VCCB = 3.6V	VIN = GND or Vcc		-	50	μA
Іссн Іссz		VCCB = 5.5V		-	-	80	
	Quiescent Power Supply Current Variation	One input at Vccв - 2.1 c	ther inputs at VCCB or GND	-	-	1.5	mA

NOTES:

1. VCCA = 2.3V to 3.6V.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

3. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS, VCCA = 2.3V TO 3.6V (A PORT)

Symbol	Parameter		Test Conditions	(1)	Min.	Max.	Unit
Vона	Output HIGH Voltage	VCCA = 3V	VCCB = 3V	Іон = – 0.1mA	2.9		V
	(B port to A port)	VCCA = 2.3V	VCCB = 3V	Iон = – 8mA	2	_	
		Vcca = 2.7V	VCCB = 3V	Iон = – 12mA	2.2	_	
		Vcca = 3V	VCCB = 3V		2.4	_	
		Vcca = 3V	VCCB = 3V	Iон = – 24mA	2.2	_	
		Vcca = 2.7V	VCCB = 4.5V		2	_	
Vola	Output LOW Voltage	VCCA = 3V	VCCB = 3V	Iol = 0.1mA	—	0.1	V
	(B port to A port)	Vcca = 2.3V	VCCB = 3V	Iol = 8mA	_	0.6	
		Vcca = 2.7V	VCCB = 3V	Iol = 12mA	_	0.5	
		Vcca = 3V	VCCB = 3V	Iol = 24mA	_	0.5	
		VCCA = 2.7V	VCCB = 4.5V		_	0.5	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to + 85°C, VccB = 3V to 5.5V.

OUTPUT DRIVE CHARACTERISTICS, VCCB = 3V TO 5.5V (B PORT)

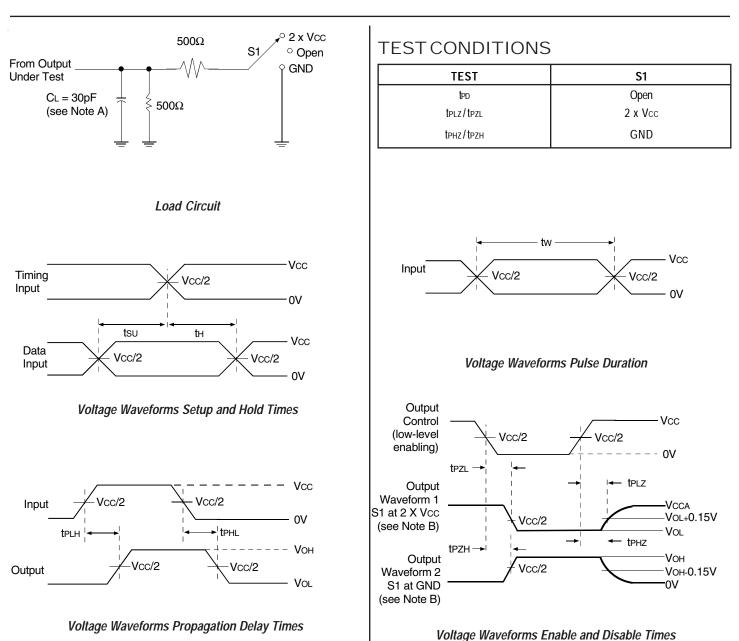
Symbol	Parameter		Test Conditions	(1)	Min.	Max.	Unit
Vонв	Output HIGH Voltage	VCCB = 3V	Vcca = 3V	Іон = – 0.1mA	2.9	—	V
	(A port to B port)	VCCB = 3V	VCCA = 2.3V	Iон = – 12mA	2.4	_	
		VCCB = 3V	Vcca = 2.7V		2.4	_	
		VCCB = 3V	Vcca = 3V	Iон = – 24mA	2.2	_	
		VCCB = 4.5V	Vcca = 2.7V		3.2	_	
Volb	Output LOW Voltage	VCCB = 3V	Vcca = 3V	Iol = 0.1mA	_	0.1	V
	(A port to B port)	VCCB = 3V	VCCA = 2.3V	Iol = 12mA	-	0.4	
		VCCB = 3V	Vcca = 3V	Iol = 24mA	_	0.5	
		VCCB = 4.5V	Vcca = 3V			0.5	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = -40° C to $+85^{\circ}$ C, VccA = 2.3V to 3.6V.

OPERATING CHARACTERISTICS, TA = 25°C

			Vcca = 3.3V, Vccb = 5V	
Symbol	Parameter	Test Conditions	Typical	Unit
Cpd	Power Dissipation Capacitance per Transceiver Outputs enabled A to B	CL = 0pF, f = 10Mhz	38	pF
Cpd	Power Dissipation Capacitance per Transceiver Outputs disabled B to A		36.5	

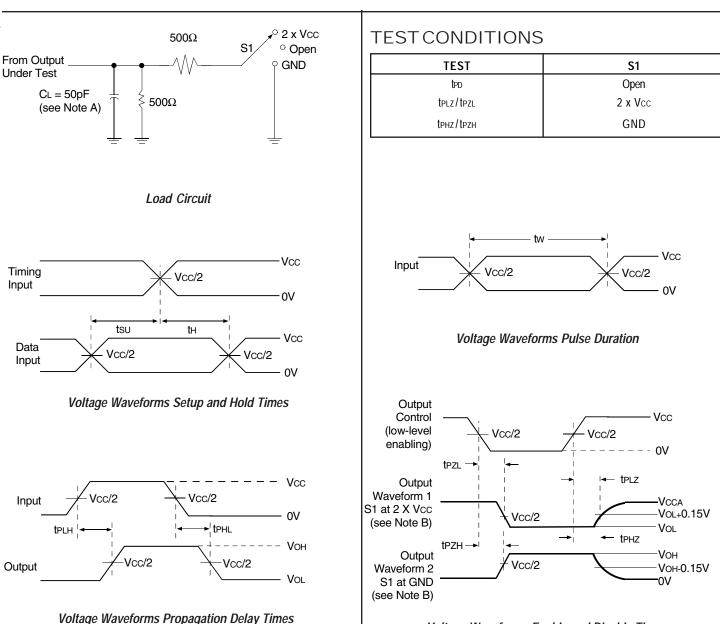

SWITCHING CHARACTERISTICS⁽¹⁾

		VCCA = 2	.5V ± 0.2V		VCCA = 2	.7V to 3.6V		
		VCCB = 3.3V ± 0.3V		$VCCB = 5V \pm 0.5V$		$VCCB = 3.3V \pm 0.3V$		1
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t PHL	Propagation Delay	1	9.4	1	6	1	7.1	ns
t PLH	Ax to Bx	1	9.1	1	5.3	1	7.2	Ĩ
t PHL	Propagation Delay	1	11.2	1	5.8	1	6.4	ns
t PLH	Bx to Ax	1	9.9	1	7	1	7.6	
tpzl	Output Enable Time	1	13	1	8.1	1	9.2	ns
tPLZ	OE to Bx	1	12.8	1	8.4	1	9.9	
tpzl	Output Enable Time	1	14.5	1	9.2	1	9.7	ns
tPLZ	OE to Ax	1	12.9	1	9.5	1	9.5	
tplz	Output Disable Time	1	7.1	1	5.5	1	6.6	ns
t PHZ	OE to Ax	1	6.9	1	7.8	1	6.9]
tPLZ	Output Disable Time	1	8.8	1	7.3	1	7.5	ns
t PHZ	OE to Bx	1	8.9	1	7	1	7.9]

NOTE:

1. See TEST CIRCUITS AND WAVEFORMS. TA = -40° C to $+85^{\circ}$ C.

LOAD CIRCUIT AND VOLTAGE WAVEFORMS PARAMETER MEASUREMENT INFORMATION (A PORT)

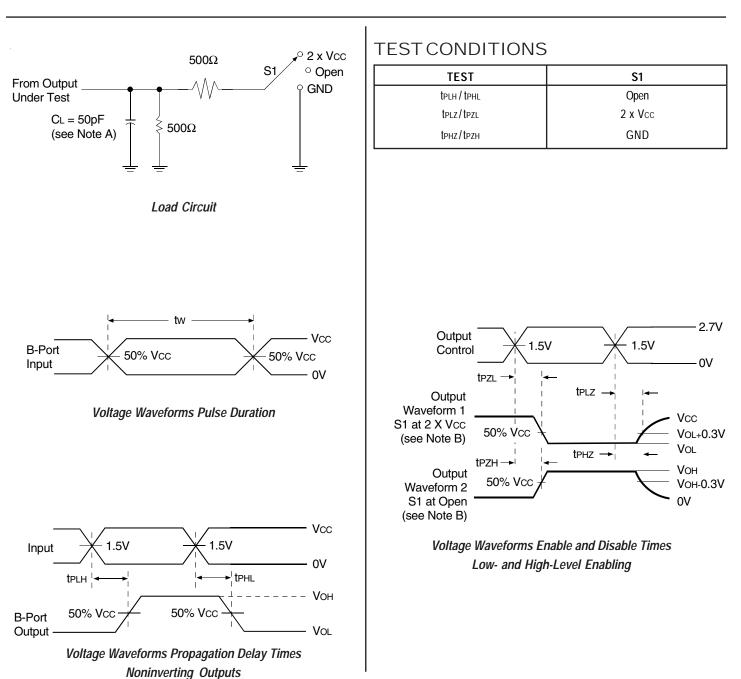


$V_{CCA} = 2.5V \pm 0.2V$ and $V_{CCB} = 3.3V \pm 0.3V$

NOTES:

- A. CL includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz; Zo = 50 Ω ; tr \leq 2ns; tr \leq 2ns.
- D. The outputs are measured one at a time with one transition per measurement.

LOAD CIRCUIT AND VOLTAGE WAVEFORMS PARAMETER MEASUREMENT INFORMATION (B PORT)

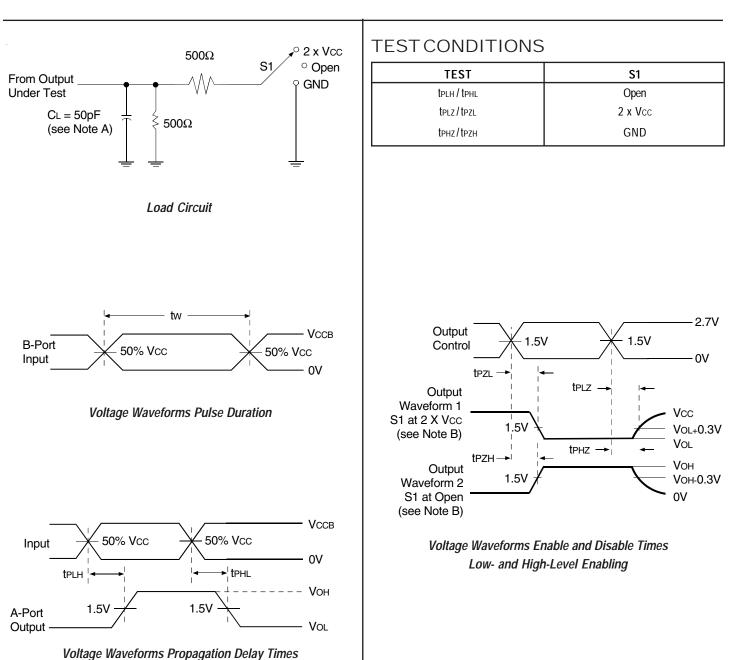

 $V_{CCA} = 2.5V \pm 0.2V$ and $V_{CCB} = 3.3V \pm 0.3V$

Voltage Waveforms Enable and Disable Times

NOTES:

- A. CL includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz; Zo = 50 Ω ; tr \leq 2ns; tr \leq 2ns.
- D. The outputs are measured one at a time with one transition per measurement.

LOAD CIRCUIT AND VOLTAGE WAVEFORMS PARAMETER MEASUREMENT INFORMATION (A PORT)

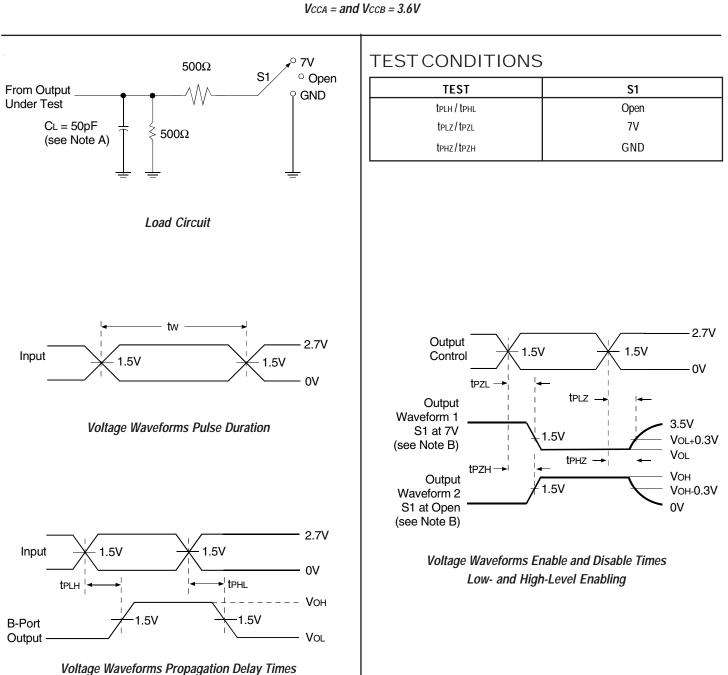


VCCA = 3.6V and VCCB = 5.5V

NOTES:

- A. CL includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz; Zo = 50 Ω ; tr \leq 2.5ns; tr \leq 2.5ns;
- D. The outputs are measured one at a time with one transition per measurement.

LOAD CIRCUIT AND VOLTAGE WAVEFORMS PARAMETER MEASUREMENT INFORMATION (B PORT)

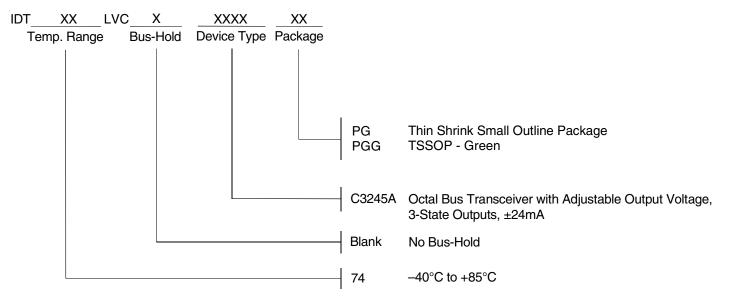

VCCA = 3.6V and VCCB = 5.5V

NOTES:

- A. CL includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz; Zo = 50 Ω ; tr \leq 2.5ns; tr \leq 2.5ns.
- D. The outputs are measured one at a time with one transition per measurement.

Noninverting Outputs

LOAD CIRCUIT AND VOLTAGE WAVEFORMS PARAMETER MEASUREMENT INFORMATION (A AND B PORT)


Noninverting Outputs

- A. CL includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz; Zo = 50 Ω ; tr \leq 2.5ns; tr \leq 2.5ns.
- D. The outputs are measured one at a time with one transition per measurement.

IDT74LVCC3245A CMOS OCTAL BUS TRANSCEIVER WITH ADJUSTABLE OUTPUT

ORDERING INFORMATION

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com *for Tech Support:* logichelp@idt.com