SCES070G - JUNE 1996 - REVISED MAY 1999

 Members of the Texas Instruments Widebus™ Family State-of-the-Art Advanced BiCMOS 	SN54ALVTH16244 WD PACKAGE SN74ALVTH16244 DGG, DGV, OR DL PACKAGE (TOP VIEW)
Technology (ABT) Design for 3.3-V	
Operation and Low Static-Power	
Dissipation	1Y2 🛛 3 46 🗍 1A2
 5-V I/O Compatible 	GND 🛛 4 45 🕽 GND
 High Drive Capability (–32 mA/64 mA) 	1Y3 🛛 5 🛛 44 🗋 1A3
 Support Mixed-Mode Signal Operation (5-V 	1Y4 🛛 6 43 🖸 1A4
Input and Output Voltages With 3.3-V V _{CC})	
Support Unregulated Battery Operation	2Y1 8 41 2A1
Down to 2.3 V	2Y2 9 40 2A2
 Typical V_{OLP} (Output Ground Bounce) 	
< 0.8 V at V_{CC} = 3.3 V, T_A = 25°C	2Y3 0 11 38 0 2A3 2Y4 0 12 37 0 2A4
Auto3-State Eliminates Bus Current	3Y1 13 36 3A1
Loading When Voltage at the Output	3Y2 4 4 35 3A2
Exceeds V _{CC}	GND 15 34 GND
Ioff and Power-Up 3-State Support Hot	3Y3 16 33 3A3
Insertion	3Y4 🛛 17 32 🗍 3A4
 Bus Hold on Data Inputs Eliminates the 	V _{CC} [] 18 31 [] V _{CC}
Need for External Pullup/Pulldown	4Y1 🛛 19 🛛 30 🗍 4A1
Resistors	4Y2 🛛 20 29 🖸 4A2
• Latch-Up Performance Exceeds 250 mA Per	
JESD 17	4Y3 22 27 4A3
ESD Protection Exceeds 2000 V Per	
MIL-STD-883, Method 3015; Exceeds 200 V	4 0E [24 25] 3 0E

- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV) Packages, and 380-mil Fine-Pitch Ceramic Flat (WD) Package

NOTE: For tape and reel order entry: The DGGR package is abbreviated to GR, and the DGVR package is abbreviated to VR.

description

The 'ALVTH16244 devices are 16-bit buffers/line drivers designed for 2.5-V or 3.3-V V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment. These devices can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

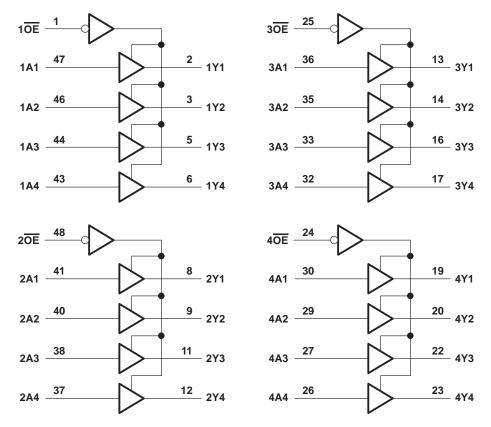
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments Incorporated

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1999, Texas Instruments Incorporated

description (continued)


When V_{CC} is between 0 and 1.2 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

These devices are fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

The SN54ALVTH16244 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ALVTH16244 is characterized for operation from –40°C to 85°C.

FUNCTION TABLE (each buffer)								
INP	JTS	OUTPUT						
OE	Α	Y						
L	Н	Н						
L	L	L						
Н	Х	Z						

logic diagram (positive logic)

SCES070G - JUNE 1996 - REVISED MAY 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions, V_{CC} = 2.5 V ± 0.2 V (see Note 3)

			SN54ALVT	H16244	SN74ALVT	H16244	UNIT
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage	2.3	2.7	2.3	2.7	V	
VIH	High-level input voltage		1.7	N	1.7		V
VIL	Low-level input voltage		0.7		0.7	V	
VI	Input voltage	0	5.5	0	5.5	V	
ЮН	High-level output current		A	-6		-8	mA
	Low-level output current		200	6		8	mA
IOL	Low-level output current; current duty cycle \leq 50%; f \geq	1 kHz	0%	18		24	IIIA
Δt/Δv	Input transition rise or fall rate Outputs enabled		9	10		10	ns/V
Δt/ΔVCC	Power-up ramp rate				200		μs/V
Т _А	Operating free-air temperature	-55	125	-40	85	°C	

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES070G - JUNE 1996 - REVISED MAY 1999

recommended operating conditions, V_CC = 3.3 V \pm 0.3 V (see Note 3)

			SN54ALVT	H16244	SN74ALVT	H16244	UNIT
		MIN	MAX	MIN	MAX	UNIT	
VCC	Supply voltage	3	3.6	3	3.6	V	
VIH	High-level input voltage		2	N.	2		V
VIL	Low-level input voltage		0.8		0.8	V	
VI	Input voltage	0	5.5	0	5.5	V	
IOH	High-level output current		7	-24		-32	mA
	Low-level output current		202	24		32	mA
IOL	Low-level output current; current duty cycle \leq 50%; f \geq	≥ 1 kHz	20%	48		64	IIIA
$\Delta t/\Delta v$	Input transition rise or fall rate Outputs enabled		9	10		10	ns/V
$\Delta t/\Delta V_{CC}$	Power-up ramp rate				200		μs/V
Т _А	Operating free-air temperature	-55	125	-40	85	°C	

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES070G - JUNE 1996 - REVISED MAY 1999

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54	ALVTH1	6244	SN74	ALVTH1	6244	
PAI	RAMETER	TEST CONDITIONS			түр†	MAX	MIN	TYP [†]	MAX	UNII
VIK		V _{CC} = 2.3 V,	lj = –18 mA			-1.2			-1.2	V
		V_{CC} = 2.3 V to 2.7 V,	I _{OH} = -100 μA	V _{CC} –0	.2		V _{CC} -0	.2		
VOH		V _{CC} = 2.3 V	I _{OH} = -6 mA	1.8						V
		VCC = 2.3 V	I _{OH} =8 mA				1.8			
		V_{CC} = 2.3 V to 2.7 V,	I _{OL} = 100 μA			0.2			0.2	
			$I_{OL} = 6 \text{ mA}$			0.4				
VOL		V _{CC} = 2.3 V	I _{OL} = 8 mA						0.4	V
		VCC = 2.5 V	I _{OL} = 18 mA			0.5				
			I _{OL} = 24 mA						0.5	
	Control inputs	V _{CC} = 2.7 V,	$V_{I} = V_{CC} \text{ or } GND$			±1			±1	
1.	Control inputs	$V_{CC} = 0 \text{ or } 2.7 \text{ V},$	V _I = 5.5 V			3 10			10	μA
Data inputs	V _{CC} = 2.7 V	$V_I = V_{CC}$		Ľ,	1			1	μА	
Data inputs		$V_{I} = 0$		P	-5			-5		
loff		V _{CC} = 0,	V_{I} or $V_{O} = 0$ to 4.5 V		1				±100	μΑ
		V/00 - 2 2 V/	VI = 0.7 V		3 115			115		
ll(hold)	Data inputs	V _{CC} = 2.3 V	V _I = 1.7 V		-10			-10		μA
()		V _{CC} = 2.7 V [‡] ,	V _I = 0 to 2.7 V	Q		±300			±300	
IEX§		V _{CC} = 2.3 V,	V _O = 5.5 V			125			125	μΑ
IOZ(PU	/PD) [¶]	$V_{CC} \le 1.2 \text{ V}, V_O = \frac{0.5}{0.5} \text{ V}$ VI = GND or V _{CC} , OE =	/ to V _{CC} , don't care			±100			±100	μA
IOZH		V _{CC} = 2.7 V	V _O = 2.3 V, V _I = 0.7 V or 1.7 V			5			5	μΑ
IOZL		V _{CC} = 2.7 V	V _O = 0.5 V, V _I = 0.7 V or 1.7 V			-5			-5	μΑ
		V _{CC} = 2.7 V,	Outputs high		0.04	0.1		0.04	0.1	
Icc		$V_{CC} = 2.7 V,$ $I_{O} = 0,$ $V_{I} = V_{CC} \text{ or GND}$	Outputs low		2.3	4.5		2.3	4.5	mA
			Outputs disabled		0.04	0.1		0.04	0.1	
Ci		V _{CC} = 2.5 V,	V _I = 2.5 V or 0		3			3		pF
Co		V _{CC} = 2.5 V,	V _O = 2.5 V or 0		6			6		pF

[†] All typical values are at V_{CC} = 2.5 V, T_A = 25°C.

[‡] This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

 $\$ Current into an output in the high state when V_O > V_{CC}

¶ High-impedance state during power up/power down

SCES070G - JUNE 1996 - REVISED MAY 1999

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V ± 0.3 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54	ALVTH1	6244	SN74	ALVTH1	6244	114117	
PAI	RAMETER			MIN	TYP†	MAX	MIN	TYP [†]	MAX	UNIT	
VIK		V _{CC} = 3 V,	lj = -18 mA			-1.2			-1.2	V	
		V _{CC} = 3 V to 3.6 V,	I _{OH} = -100 μA	V _{CC} -0	.2		V _{CC} -0.	.2			
Vон			I _{OH} = -24 mA	2						V	
		V _{CC} = 3 V	I _{OH} = -32 mA				2				
		V _{CC} = 3 V to 3.6 V,	I _{OL} = 100 μA			0.2			0.2		
			I _{OL} = 16 mA						0.4		
			I _{OL} = 24 mA			0.5				v	
VOL		$V_{CC} = 3 V$	I _{OL} = 32 mA						0.5	v	
			I _{OL} = 48 mA			0.55					
			I _{OL} = 64 mA						0.55		
	Controlingute	V _{CC} = 3.6 V,	$V_{I} = V_{CC} \text{ or } GND$			±1			±1		
	Control inputs	V _{CC} = 0 or 3.6 V,	V _I = 5.5 V			10			10		
lj	1	nputs $V_{CC} = 3.6 V$	V _I = 5.5 V			20			20	μA	
Data inputs	Data inputs		$V_I = V_{CC}$			Å 1			1		
			$V_{I} = 0$		I.	-5			-5	1	
loff	-	$V_{CC} = 0,$	$V_{I} \text{ or } V_{O} = 0 \text{ to } 4.5 \text{ V}$		Q.				±100	μΑ	
			VI = 0.8 V 75				75				
I(hold)	Data inputs	$V_{CC} = 3 V$	V _I = 2 V	-75	2		-75			μΑ	
()		V _{CC} = 3.6 V [‡] ,	V _I = 0 to 3.6 V	P	,	±500			±500		
Ι _{ΕΧ} §		V _{CC} = 3 V,	V _O = 5.5 V			125			125	μΑ	
IOZ(PU	/PD) [¶]	$V_{CC} \le 1.2 \text{ V}, V_{O} = \frac{0.5}{0.5}$ V _I = GND or V _{CC} , OE	V to V _{CC} , = don't care			±100		-	±100	μA	
IOZH		V _{CC} = 3.6 V	$V_{O} = 3 V,$ $V_{I} = 0.8 V \text{ or } 2 V$			5			5	μA	
IOZL		V _{CC} = 3.6 V	$V_{O} = 0.5 V,$ $V_{I} = 0.8 V \text{ or } 2 V$			-5			-5	μA	
		V _{CC} = 3.6 V,	Outputs high		0.07	0.1		0.07	0.1		
ICC		$I_{O} = 0,$	Outputs low		3.2	5		3.2	5	mA	
		$V_{I} = V_{CC} \text{ or } GND$	Outputs disabled	0.07 0.1		0.07	0.1				
∆I _{CC} #		$V_{CC} = 3 V \text{ to } 3.6 V$, Or Other inputs at V_{CC} or	ne input at V _{CC} – 0.6 V, GND			0.4			0.4	mA	
C_{i} $V_{CC} = 3.3 V,$ $V_{I} = 3.3 V c$		VI = 3.3 V or 0		3			3		pF		
Co		V _{CC} = 3.3 V,	V _O = 3.3 V or 0		6			6		pF	

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. [‡] This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

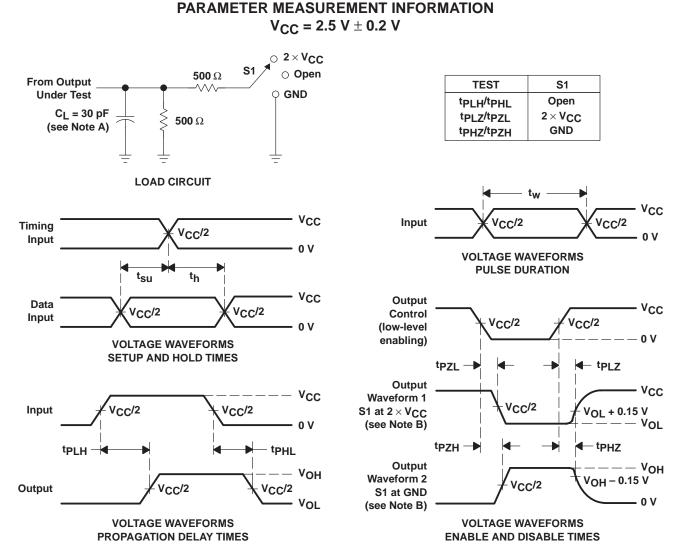
Current into an output in the high state when V_O > V_{CC}

 \P High-impedance state during power up/power down

This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SN54ALVTH16244, SN74ALVTH16244 2.5-V/3.3-V 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCES070G - JUNE 1996 - REVISED MAY 1999

switching characteristics over recommended operating free-air temperature range, C_L = 30 pF, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)


PARAMETER	FROM	то	SN54ALVTH16244		SN74ALVT	LINUT	
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	UNIT
^t PLH	А	V	1	3.1	1	3	ns
^t PHL	~	1		3.6	1	3.5	115
^t PZH	OE	V	1.1	2 6	1.1	5.9	ns
tPZL	UE	I	1.19	4.8	1.1	4.7	115
^t PHZ	OE	v	1,5	4.5	1.5	4.4	ns
^t PLZ	UE		Q 1	3.5	1	3.4	115

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	то	SN54ALVTH	SN54ALVTH16244		SN74ALVTH16244		
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	UNIT	
^t PLH	А	V	1	2.6	1	2.4	ns	
^t PHL	~	I	1 4	2.6	1	2.5	115	
^t PZH		V	1,2	3.9	1	3.8	-	
^t PZL	OE	T	5	3	1	2.9	ns	
^t PHZ	OE	v	1,5	4.3	1.5	4.2	ns	
^t PLZ	UE	•	2 1.5	3.7	1.5	3.6	113	

SCES070G - JUNE 1996 - REVISED MAY 1999

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SN54ALVTH16244, SN74ALVTH16244 2.5-V/3.3-V 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCES070G – JUNE 1996 – REVISED MAY 1999

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 3.3 V \pm 0.3 V$ 0 6 V **S1** O Open **500** Ω From Output TEST **S1** $\wedge \wedge \wedge$ O GND **Under Test** Open tPLH/tPHL $C_L = 50 \text{ pF}$ 6 V tPLZ/tPZL **500** Ω (see Note A) GND tPHZ/tPZH LOAD CIRCUIT tw 3 V 3 V 1.5 V 1.5 V Input Timing 1.5 V 0 V Input 0 V **VOLTAGE WAVEFORMS** PULSE DURATION t_{su} th 3 V Data 3 V 1.5 V 1.5 V Input 1.5 V 1.5 V **Output Control** 0 V 0 V **VOLTAGE WAVEFORMS** SETUP AND HOLD TIMES ^tPZL - tpi 7 Output 3 V 3 V Waveform 1 1.5 V 1.5 V .5 V Input S1 at 6 V V_{OL} + 0.3 V VOL (see Note B) 0 V tPZH -- tPHZ **t**PLH **tPHL** Output VOH VOH Waveform 2 V_{OH} – 0.3 V 1.5 V Output 1.5 V 1.5 V S1 at GND $\approx 0 V$ VOL (see Note B) **VOLTAGE WAVEFORMS VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES ENABLE AND DISABLE TIMES** INVERTING AND NONINVERTING OUTPUTS LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω, t_f \leq 2.5 ns. t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated

Contact Us	Buy 🔳	About TI 🔺	TI Worldwide	my.TI			Search	# Advanced Search
			Products	S 🖌	Applications 4	Support 🖌	Keyword	
							Part Number	

Save this to your personal library Add to my.T1

TI Home > Semiconductors > Logic > Buffers and Drivers > Non-Inverting Buffers and Drivers >

SN74ALVTH16244, Status: ACTIVE

2.5-V/3.3-V 16-Bit Buffers/Drivers With 3-State Outputs

Features	Samples	Technical Documents
모 Quality & Pb-Free Data	Pricing/Packaging	Applications Notes
Related Products	Inventory	Simulation Models
Development Tools	Symbols/Footprints	Reference Designs

Datasheet

2.5-V/3.3-V 16-Bit Buffers/Drivers With 3-State Outputs (Rev. G) (sn74alvth16244.pdf, 157 KB) 21 May 1999 Download

	SN74ALVTH16244
Voltage Nodes (V)	3.3, 2.5
Vcc range (V)	2.3 to 3.6
Input Level	TTL/CMOS
Output Level	LVTTL
Output Drive (mA)	-8/24
tpd max (ns)	3.5
Static Current	4.5
	Samples
	Inventory

Product Information

Features

- Members of the Texas Instruments *Widebus*TM Family
- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low Static-Power Dissipation
- 5-V I/O Compatible
- High Drive Capability (-32 mA/64 mA)
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC})
- Support Unregulated Battery Operation Down to 2.3 V
- Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Auto3-State Eliminates Bus Current Loading When Voltage at the Output Exceeds V_{CC}
- Ioff and Power-Up 3-State Support Hot Insertion
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV) Packages, and 380-mil Fine-Pitch Ceramic Flat (WD) Package

NOTE: For tape and reel order entry:

The DGGR package is abbreviated to GR, and

the DGVR package is abbreviated to VR.

Widebus is a trademark of Texas Instruments Incorporated.

Description

Add to my.TI

Refine Your Selection

- Logic: Non-Inverting Buffers and Drivers

Support

- KnowledgeBase
- Contact Technical Support
- TI Cross Reference
- Training
- Part Marking Lookup
- Part Number Nomenclature

the capability to provide a TTL interface to a 5-V system environment. These devices can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

When V_{CC} is between 0 and 1.2 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, the output-enable (OE\) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

These devices are fully specified for hot-insertion applications using $I_{\rm off}$ and power-up 3-state. The $I_{\rm off}$ circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

The SN54ALVTH16244 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALVTH16244 is characterized for operation from -40°C to 85°C.

Pricing/Packaging/Samples							
•			Price	Packaging			Samples
Device	Status	Temp (°C)	Budget Price (\$US) QTY	Package Type Pins	Footprints	STD Pack QTY	Samples
74ALVTH16244ZQLR	ACTIVE	-40 to 85	0.97 1KU	VFBGA (ZQL) 56		1000	Not Available
SN74ALVTH16244DL	ACTIVE	-40 to 85	0.88 1KU	SSOP (DL) 48		25	Contact TI Distributor or Sales Office
SN74ALVTH16244DLR	ACTIVE	-40 to 85	0.88 1KU	SSOP (DL) 48		1000	Contact TI Distributor or Sales Office
SN74ALVTH16244GR	ACTIVE	-40 to 85	0.88 1KU	TSSOP (DGG) 48		2000	Contact TI Distributor or Sales Office
SN74ALVTH16244KR	ACTIVE	-40 to 85	0.88 1KU	VFBGA (GQL) 56		1000	Contact TI Distributor or Sales Office
SN74ALVTH16244VR	ACTIVE	-40 to 85	0.88 1KU	TVSOP (DGV) 48		2000	Contact TI Distributor or Sales Office

Inventory								
•	TI Inventory Status				Reported Distributor Inventory			
74ALVTH16244ZQLR	As of 10:41 AM GMT, 2 Jan 200			As of 10:41 AM GMT, 2 Jan 2005				
	In Stock	In Progress QTY	Date Lead Time	In Stock	Distributor: Region	Company	Purchase	
	0*	>10k 2 Feb	4 Weeks		None Reported View Distributors			
SN74ALVTH16244DL		As of 10:41 AM	/ GMT, 2 Jan 2005		As of	10:41 AM G	MT, 2 Jan 2005	
	In Stock	In Progress QTY	Date Lead Time	In Stock	Distributor: Region	Company	Purchase	
	1891*	1455 31 Jan	4 Weeks	> 1 k	Americas DigiKey		Buy Now	
		> 10k 7 Feb		238	Europe Spoerle		Buy Now	
				75	Americas Memec Ins	ight	Buy Now	
SN74ALVTH16244DLR		As of 10:41 AM	/ GMT, 2 Jan 2005		As of	10:41 AM G	MT, 2 Jan 2005	
	In Stock	In Progress QTY	Date Lead Time	In Stock	Distributor: Region	Company	Purchase	
	0*	1493 24 Jan	4 Weeks	347	Americas DigiKey		Buy Now	
		>10k 2 Feb						
SN74ALVTH16244GR		As of 10:41 AM	/ GMT, 2 Jan 2005		As of	10:41 AM G	MT, 2 Jan 2005	
	In Stock	In Progress QTY	Date Lead Time	In Stock	Distributor: Region	Company	Purchase	
	0*	500 17 Jan	4 Weeks	>1k	Americas DigiKey		Buy Now	
		1500 26 Jan		>1k	Americas Newark Ele	ctronics	Buy Now	
		>10k 3 Feb						
SN74ALVTH16244KR		As of 10:41 AM	/ GMT, 2 Jan 2005		As of	10:41 AM G	MT, 2 Jan 2005	
	In Stock	In Progress QTY	Date Lead Time	In Stock	Distributor: Region	Company	Purchase	
	0*	> 10k 2 Feb	4 Weeks	348	Americas DigiKey		Buy Now	
SN74ALVTH16244VR		As of 10:41 AM	A GMT, 2 Jan 2005		As of	10:41 AM G	MT, 2 Jan 2005	
	In Stock	In Progress QTY	Date Lead Time	In Stock	Distributor: Region	Company	Purchase	
	0*	5820 14 Feb	7 Weeks	>1k	Americas DigiKey		Buy Now	
		355 21 Feb						
		2000 24 Feb						
		>10k 14 Mar						

* Our information is updated daily, so please check back with us soon if ** Lead time information is not available at this time. However, our this does not meet your needs. You may also contact your TI Authorized information is updated daily so please check back with us soon. Please Distributor, including those listed above, for real time stock information. contact your preferred TI Authorized Distributor for additional

information.

Quality & Lead (Pb)-Free Data							
	MTBF/FIT Rate						
Eco Plan*	Lead/Ball Finish	MSL Rating/Peak Reflow	Details	Details			
Pb-Free (RoHS)	SNAGCU	Level-1-260C-UNLIM	View	View			
None	CU NIPDAU	Level-1-235C-UNLIM	View	View			
None	CU NIPDAU	Level-1-235C-UNLIM	View	View			
Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM	View	View			
None	SNPB	Level-1-240C-UNLIM	View	View			
Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM	View	View			
	Eco Plan* Pb-Free (RoHS) None None Pb-Free (RoHS) None	Eco Plan* Lead/Ball Finish Pb-Free (RoHS) SNAGCU None CU NIPDAU None CU NIPDAU Pb-Free (RoHS) CU NIPDAU None CU NIPDAU None SNPB	Product ContentEco Plan*Lead/Ball FinishMSL Rating/Peak ReflowPb-Free (RoHS)SNAGCULevel-1-260C-UNLIMNoneCU NIPDAULevel-1-235C-UNLIMNoneCU NIPDAULevel-1-235C-UNLIMPb-Free (RoHS)CU NIPDAULevel-1-235C-UNLIMNoneSNPBLevel-1-240C-UNLIM	Product ContentEco Plan*Lead/Ball FinishMSL Rating/Peak ReflowDetailsPb-Free (RoHS)SNAGCULevel-1-260C-UNLIMViewNoneCU NIPDAULevel-1-235C-UNLIMViewNoneCU NIPDAULevel-1-235C-UNLIMViewPb-Free (RoHS)CU NIPDAULevel-1-250C-UNLIMViewNoneSNPBLevel-1-240C-UNLIMView			

* May not be currently available - please click on the Product Content Details "View" link in the table above for the latest availability information and additional product content details.

If the information you are requesting is not available online at this time, contact one of our Product Information Centers regarding the availability of this information.

\rm * TI R	ecommends
------------	-----------

Technical Documents		
Datasheets	Keep track of what's new	Add to my.TI
2.5-V/3.3-V 16-Bit Buffers/Drivers With 3-State Outputs (Rev. G) (sn74alvth16244.pdf,157 KB)		
21 May 1999 Download		
Application Notes		
Semiconductor Packing Material Electrostatic Discharge (ESD) Protection (szza047.htm, 12 KB)		
08 Jul 2004 Abstract		
Shelf-Life Evaluation of Lead-Free Component Finishes (szza046.htm, 12 KB)		
24 May 2004 Abstract		
Understanding and Interpreting Standard-Logic Data Sheets (Rev. B) (szza036b.htm, 11 KB)		
28 May 2003 Abstract		
TI IBIS File Creation, Validation, and Distribution Processes (szza034.htm, 12 KB)		
29 Aug 2002 Abstract		
16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B)	(szza029b.htm,12 KB)	
22 May 2002 Abstract		
Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices (szza033.htm, 12 KB)		
10 May 2002 Abstract		
Benefits & Issues of Migrating 5-V and 3.3-V Logic to Lower-Voltage Supplies (Rev. A) (sdaa	a011a.htm,12 KB)	
08 Sep 1999 Abstract		
Advanced Low-Voltage Technology (scea015.htm, 11 KB)		
27 Jul 1999 Abstract		
View Application Notes for NON-INVERTING BUFFERS AND DRIVERS		
🕒 User Guides		
LOGIC Pocket Data Book (scyd013.pdf,4835 KB)		
05 Dec 2002 Download		
Simulation Models		
IBIS Model		
IBIS Model of SN74ALVTH16244 (scem326.ibs,172 KB)		
06 Feb 2003 ibis / zip		
More Literature		

Logic Selection Guide Second Half 2004 (Rev. V) (sdyu001v.pdf,5770 KB) 21 Sep 2004 Download Logic Cross-Reference (Rev. A) (scyb017a.pdf,2938 KB) 07 Oct 2003 Download Advanced Bus Interface Logic Selection Guide (scyt126.pdf,453 KB) 09 Jan 2001 Download View More Literature for NON-INVERTING BUFFERS AND DRIVERS

Products | Applications | Support | Site Map

© Copyright 1995-2004 Texas Instruments Incorporated. All rights reserved. Trademarks | Privacy Policy | Terms of Use