

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

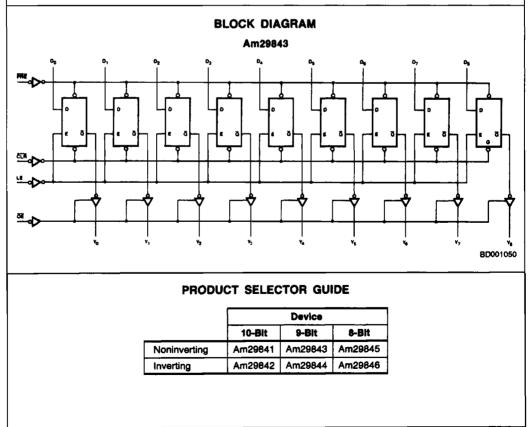
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

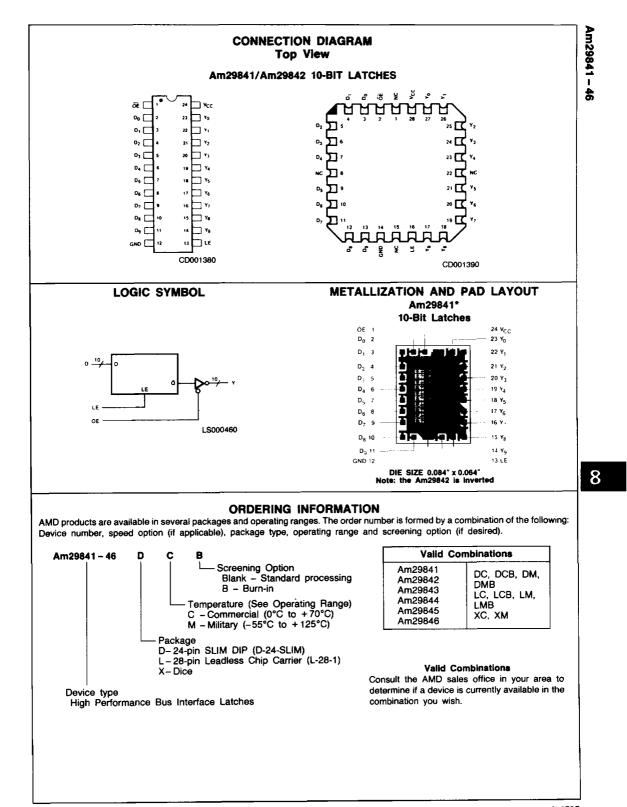
Am29841 - 46

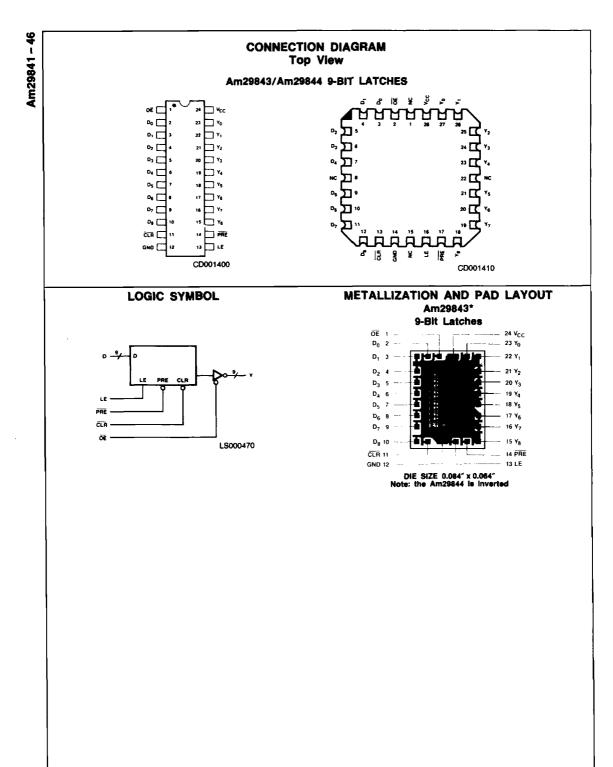
High Performance Bus Interface Latches

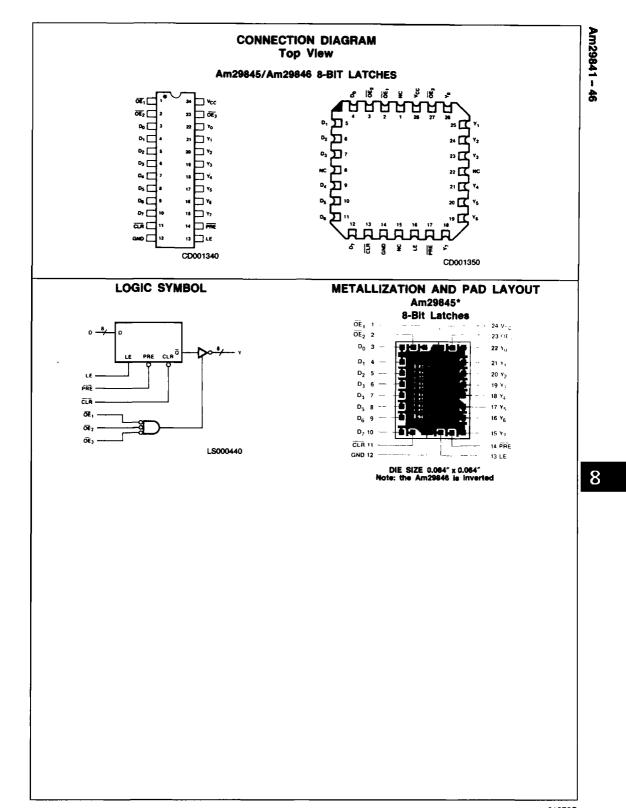
DISTINCTIVE CHARACTERISTICS

- High-speed parallel latches


 Noninverting transparent tpp = 5.25ns typ
 Inverting transparent tpp = 6.0ns typ
- Buffered common latch enable, clear and preset input
- Three-state outputs glitch-free during power-up and down. Outputs have Schottky clamp to ground
- 48mA Commercial IOL, 32mA MIL IOL
- Low input/output capacitance
- 6pF inputs (typical)
 8pF outputs (typical)
- IOH specified 2.0V and 2.4V


GENERAL DESCRIPTION


The Am29840 Series bus interface latches are designed to eliminate the extra packages required to buffer existing latches and provide extra data width for wider address/data paths or buses carrying parity. The Am29841 and Am29842 are buffered, 10-bit wide versions of the popular '373 function. The Am29843 and Am29844 are 9-bit wide buffered latches with Preset (PRE) and Clear (CLR) – ideal for parity bus interfacing in high performance systems. The Am29845 and Am29846 are 8-bit buffered latches with all the '843/4 controls plus multiple enables (OE1, OE2, OE3)


to allow multiuser control of the interface, e.g., \overline{CS} , DMA, and RD/WR. They are ideal for use as an output port requiring high I_{OL}/I_{OH} .

All of the Am29800 high performance interface family products are designed for high capacitance load drive capability while providing low capacitance bus loading at both inputs and outputs. All inputs are Schottky diode inputs, and all outputs are designed for low capacitance bus loading in the high impedance state.

Am29841 - 46

PIN DESCRIPTION

Pin No.	Name	1/0	Description
Am29841/43	3/45 (Nonin	verting)	
11	CLA	1	When CLR is LOW, the outputs are LOW if OE is LOW. When CLR is HIGH, data can be entered into the latch.
	Dį	1	The latch data inputs.
13	LE	1	The latch enable input. The latches are transparent when LE is HIGH. Input data is latched on the HIGH-to-LOW transition.
	Yi	0	The 3-state latch outputs.
1	ŌE	1	The output enable control. When \overline{OE} is LOW, the outputs are enabled. When OE is HIGH, the outputs Y_i are in the high-impedance (off) state.
14	PRE	1	Preset line. When PRE is LOW, the outputs are HIGH if OE is LOW. Preset overrides CLR.
Am29842/44	1/46 (invert	ing)	
11	CLR	1	When CLR is LOW, the outputs are LOW if OE is LOW. When CLR is HIGH, data can be entered into the latch.
	Di	1	The latch inverting data inputs.
13	LE	1	The latch enable input. The latches are transparent when LE is HIGH. Input data is latched on the HIGH-to-LOW transition.
	Yi	0	The 3-state latch outputs.
1	ŌE	1	The output enable control. When OE is LOW, the outputs are enabled. When OE is HIGH, the outputs Y_1 are in the high-impedance (off) state.
14	PRE	1	Preset line. When PRE is LOW, the outputs are HIGH if OE is LOW, Preset overrides CLR.

FUNCTION TABLES

29841/43/45 (Noninverting)

	In	puts	-		Internal	Outputs	
CLR	PRE	ŌE	LE	Dı	G	Yi	Function
н	н	н	x	X	X	z	Hi-Z
н	н	н	н	٤	٤	Z	Hi-Z
н	н	н	н	н	н	Z	Hi-Z
н	н	н	L	x	NC	z	Latched (Hi-Z)
н	н	L	н	L	L	L	Transparent
н	н	L	н	н	H	н	Transparent
н	н	L	L	X	NC	NC	Latched
н	L	L	x	x	н	н	Preset
L	н	L	X	х	L	L	Clear
Ł	L	L	X	х	н	н	Preset
Ł	н	н	L	x	L	z	Latched (Hi-Z)
н	L	н	L	×	н	z	Latched (Hi-Z)

29842/44/46 (Inverting)

	In	puts			Internal	Outputs	
CLR	PRE	ŌĒ	LE	Di	Qi	Yi	Function
н	н	н	x	х	х	Z	Hi-Z
н	н	н	н	н	L	z	Hi-Z
н	н	н	н	L	н	z	Hi-Z
н	н	н	L	x	NC	z	Latched (Hi-Z)
н	н	L	н	н	L	Ļ	Transparent
н	н	L	н	L	н	н	Transparent
н	н	L	L	х	NC	NC	Latched
н	L	L	X	х	н	н	Preset
L	н	L	х	х	L	L	Clear
L	L	L	x	X	н	н	Preset
L	н	н	L	x	L	z	Latched (Hi-Z)
н	L	н	L	×	н	z	Latched (Hi-Z)

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	85°C to +150°C
Ambient Temperature with	
Power Applied	55°C to +125°C
Supply Voltage to Ground Potential	
Continuous	0.5V to +7.0V
DC Voltage Applied to Outputs	
for High Output State	0.5V to V _{CC} max
DC input voltage	0.5V to +5.5V
DC Output Current, into Outputs	100mA
DC input Current	30mA to +5.0mA

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

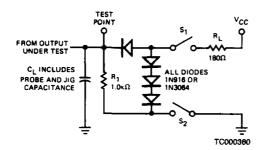
Commercial (C) Devices	
Temperature0°C t	to +70°C
Supply Voltage + 4.75V to	o +5.25V

Military (M) Devices Temperature-55°C to +125°C Supply Voltage + 4.5V to + 5.5V Operating ranges define those limits over which the function-

ality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Parameters	Description	Test Condit	Min	Typ (Note 1)	Max	Units		
		V _{CC} = MIN	I _{OH} = - 15mA	2.4	3.3			
VOH	Output HIGH Voltage	VIN = VIH or VIL	i _{OH} = - 24mA	2.0	3.1		Volts	
		V _{CC} = MIN	MiL, I _{OL} = 32mA			0.5		
VOL	Output LOW Voltage	VIN = VIH or VIL	COM'L, I _{OL} = 48mA			0.5	Volts	
VIH	Input HIGH Level	Guaranteed input logication for all inputs	2.0			Volts		
VIL	Input LOW Level	Guaranteed input logica for all inputs			0.8	Volts		
VI	Input Clamp Voltage	V _{CC} = MIN, I _{IN} = -18m			-1.2	Volts		
41.	Input LOW Current	V _{CC} = MAX, V _{IN} = 0.4V			- 1.0.	mA		
hiH	Input HIGH Current	V _{CC} = MAX, V _{IN} = 2.7V				50	μA	
4	Input HIGH Current	V _{CC} = MAX, V _{IN} = 5.5V				1.0	mA	
	Output Off-State (High Impedance)		V _O = 0.4V			-50	μΑ	
ŀoz	Output Current	V _{CC} = MAX	Vo = 2.4V			50		
ISC	Output Short Circuit Current ³	V _{CC} = MAX		- 75		-250	mA	
			Over Temperature Range			120		
icc	Supply Current	V _{CC} = MAX Outputs Open	+ 70			110	m A	
			+ 125°C			100	7	


8

Notes: 1. All typical values are T_A = 25°C, V_{CC} = 6.0V.
 2. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
 3. Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

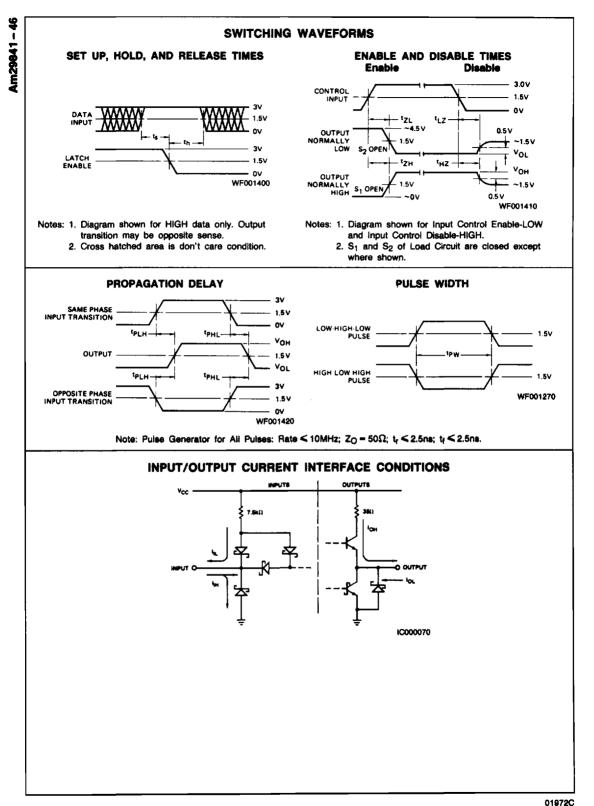
Am29841 - 46

Am29841 - 46

SWITCHING TEST CIRCUIT

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

	Description		Test Conditions	COMM	ERCIAL	MILI		
Parameters			(Note 4)	Min	Max	Min	Max	Units
PLH (Am29641, 3, 5)		CL = 50pF	3.5	9.5	3.5	11	ns	
ίρης.	Data (Di) to Output Yi (LE = HIG	ပြို့ သက်မ	3.5	9.5	3.5	11	ns	
ФLH		,			12.5		14	ns
^t PHL			C _L = 300pF		13		15	ns
te	Data to LE Setup Time			2.5		2.5		ns
<u>чн</u>	Data to LE Hold Time		CL = 50pF	2.5		3		ns
tplh (Am29842, 4, 6)			C _L = 50pF	3.5	10		12	ns
^t PHL	Data (Di) to Output (Vi) (LE = H	GH)		3.5	10		12	ns
^т есн		 ,	a		12.5		14	ns
^t PHL			C _L = 300pF		13		15	ns
tPLH	Data to LE Setup Time			2.5		2.5		ns
^t PHL	Data to LE Hold Time		С _L = 50pF	2.5		Э		ns
чецн		C _L = 50pF		12		16	ns	
PHL	Latch Enable (LE) to Yi			12		16	ns	
тецн			CL = 300pF		16		20	ns
tPHL					16		20	ns
							<u> </u>	ns
			- C _L = 50pF					កទ
tрін	Propagation Delay, Preset to Yi				12		14	ns
ts	Preset Recovery (PRE _) Tin	าอ			14		17	ns
ФНL — — — — — — — — — — — — — — — — — — —	Propagation Delay, Clear to Yi				21		23	ns
ts	Clear Recovery (CLR) Time	•			14		17	กร
tewh	LE Pulse Width	HIGH		6		6		ns
1PWL	Preset Pulse Width	LOW	CL = 50pF	в		9		ns
tewi	Clear Pulse Width	LOW	1	B		9		ns
tzh	· · · -	·	C _L = 300pF		20		22	ns
tzL	Output Enable Time OE L to	v .			23		25	ns
tzH		¥1	C. = 50pE		14		15	ns
tzL			C _L = 50pF		14		15	ns
ţнz			Ci. = 50pF		15		15	ns
tLZ	Output Disable Time OE _ to	v .			12		12	ns
ŧнz			CL = 5pF		9		10	ns
tLZ					9		10	ns


Parameters	Description	Test Conditions (Note 4)	Min	Тур	Max	Unite	
¹ PLH (Am29841, 3, 5)		CL = 50pF	3.5	5.7	8	ns	
tPHL	Data (Di) to Output Yi (LE = HIGH	n	0L - 00p	3.5	6.2	8	ns
1PLH		΄ Γ			10	13	ns
1PHL		C _L = 300pF		10	13	ns	
ts	Data to LE Setup Time		-	2.0	-0.2		ns
tң	Data to LE Hold Time		C _L = 50pF	2.5	0.7		r18
tp _{LH} (Am29842, 4, 6)			C _L = 50pF	3.5	6.2	8.5	ns
^t PHL	Data (D _i) to Output (Ÿi) (LE = HIG	н		3.5	6.5	8.5	ns
tPLH		·	C _L = 300pF		10	13	ns
tPHL					10	13	r18
ts	Data to LE Setup Time		2.5	0.3		ns	
<u>ч</u>	Data to LE Hold Time		C _L = 50pF	2.5	0.2		ris
tPLH .					8	10.5	ns.
ФНС	Latch Enable (LE) to Y;	_	C _L = 50pF		7.5	10	n\$
telh			CL = 300pF			15	ns.
тенс						15	ns
· · ·							ns
							ns
tPLH	Propagation Delay, Preset to Yi		C _L = 50pF		6.5	9	n\$
ts	Preset Recovery (PRE) Time				7.3	12	n8
^t ₽HL	Propagation Delay, Clear to Yi				15	18	n8
ts	Clear Recovery (CLR				7.8	12	n.8
tpwH	LE Pulse Width	HIGH		4	2.5		06
1PWL	Preset Pulse Width	LOW	C _L = 50pF	5			n8
1PWL	Clear Pulse Width	LOW		6			n8
^t zн			C _L = 300pF			17	715
tzL	Output Enable Time DE L to Y	Ļ	-L	-		21	718
tzn	_		C _L = 50pF		7.3	12	n8
1 <u>ZL</u>					9.7	12 14	ns ns
1HZ 1LZ			C _L = 50pF		4,7	11	na
14z	- Output Disable Time OE I to Y	۱ <u>۲</u>	Cr = 5pE		3.4	6	ns
1LZ			C _L = 5pF (Note 5)		3.8	8	

Note: 4. See test circuit and waveforms. 5. Not tested.

8

Am29841 -- 46

Г

