

UNISONIC TECHNOLOGIES CO., LTD

UC3842B/3843B

LINEAR INTEGRATED CIRCUIT

HIGH PERFORMANCE **CURRENT MODE** CONTROLLERS

DESCRIPTION

The UTC UC3842B/3843B are specifically designed for off-line and dc-to-dc converter applications offering the designer a cost-effective solution with minimal external components.

The UC3842B has UVLO thresholds 16V (on) and 10V(off), ideally suited for off-line converters. The UC3843B is tailored for lower voltage applications having UVLO thresholds of 8.4V(on) and 7.6V(off).

FEATURES

- * Trimmed oscillator for precise frequency control
- * Oscillator frequency guaranteed at 250kHz
- * Current mode operation to 500kHz
- * Automatic feed forward compensation
- * Latching PWM for cycle-by-cycle current limiting
- * Internally trimmed reference with undervoltage lockout
- * High current totem pole output
- * Undervoltage lockout with hysteresis
- * Low startup and operating current

Lead-free: UC3842BL

UC3843BL

Halogen-free: UC3842BP

UC3843BP

ORDERING INFORMATION

	Ordering Number		Dookago	Dooking	
Normal	Lead Free	Halogen Free	Package	Packing	
UC3842B-D08-T	UC3842BL-D08-T	UC3842BP-D08-T	DIP-8	Tube	
UC3842B-S08-R	UC3842BL-S08-R	UC3842BP-S08-R	SOP-8	Tape Reel	
UC3843B-D08-T	UC3843BL-D08-T	UC3843BP-D08-T	DIP-8	Tube	
UC3843B-S08-R	UC3843BL-S08-R	UC3843BP-S08-R	SOP-8	Tape Reel	

www.unisonic.com.tw

■ PIN CONFIGURATION

■ PIN DESCRIPTIONS

PIN NO.	PIN NAME	I/O	DESCRIPTION
1	COMP	0	Error amp output to provide loop compensation maintaing V _{FB} at 2.5V
2	V_{FB}	I	Error amp inverting input, The non-inverting input of error amp is 2.5V band gap reference
3	CS	I	Current sense input to PWM control gate drive of output
4	R_TC_T	I	To set oscillator frequency and maximum output duty cycle
5	GND		Power ground
6	OUTPUT	0	To direct drive power MOSFET
7	V _{CC}		Power supply
8	V_{REF}	0	5V regulated output provides charging current for C _T through R _T

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS(Ta=25°C)

PARAMETER		SYMBOL	RATINGS	UNIT
Total Power Supply and Zener Current		$(I_{CC} + Iz)$	30	mA
Output Current, Source or Sink (note1)		lo	1.0	Α
Output Energy (capacitive load per cycle)		W	5.0	μJ
Current Sense and Voltage Feedback Inputs		V_{IN}	-0.3 ~ +5.5	V
Error Amp. Output Sink Current		I _{O(SINK)}	10	mA
Dower Dissination	DIP-8	D	1250	mW
Power Dissipation	SOP-8	P_{D}	702	mW
Operating Junction Temperature		TJ	+150	°C
Operating Temperature		T _{OPR}	0 ~ +70	°C
Storage Temperature Range		T _{STG}	-65 ~ + 150	°C

Note Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Thermal Decistores Investigate Ambient	DIP-8	0	100	°C/W
Thermal Resistance Junction to Ambient	SOP-8	θ_{JA}	178	°C/W

■ ELECTRICAL CHARACTERISTICS

 $(0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 70^{\circ}\text{C}, \text{V}_{\text{CC}} = 15\text{V} \text{ [note 2]}, \text{R}_{\text{T}} = 10\text{k}, \text{C}_{\text{T}} = 3.3\text{nF, unless otherwise specified)}$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.1 20 25 5.18	V mV mV/°C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20 25	mV mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20 25	mV mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.18	mV/°C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.18	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		uV
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-180	mA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	55	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	56	kHz
	275	
Temperature $\Delta T_{OSC}/\Delta I$ $0^{\circ}C \leq T_{A} \leq 70^{\circ}C$ 0.5	1.0	%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		%
Peak) V_{OSC} 1.6 Discharge Current Idischg $T_J = 25^{\circ}C$ 7.8 $0^{\circ}C \le T_A \le 70^{\circ}C$ 7.6 ERROR AMPLIFIER SECTION Voltage Feedback Input V_{FB} Vo=2.5V 2.42 2.50		70
Discharge Current Idischg $T_J = 25^{\circ}C$ 7.8 7.6 8.3 ERROR AMPLIFIER SECTION Voltage Feedback Input V_{FB} Vo=2.5V 2.42 2.50		V
Discharge Current Idischg $0^{\circ}\text{C} \leq T_{A} \leq 70^{\circ}\text{C}$ 7.6 8.3 ERROR AMPLIFIER SECTION Voltage Feedback Input V _{FB} Vo=2.5V 2.42 2.50		V
	8.8	mA
Voltage Feedback Input V _{FB} Vo=2.5V 2.42 2.50	8.8	ША
Input Bias Current I(RIAS) VER=5.0V -0.1	2.58	V
(Birto)	-2.0	μΑ
Open Loop Voltage Gain G _{VO} 2 ≤Vo≤4V 65 90		dB
Unity Gain Bandwidth GB_W $T_J = 25^{\circ}C$ 0.7 1.0		MHz
Power Supply Rejection Ratio PSRR I2V≤Vcc≤25V 60 70		dB
Output Sink Current I _{SINK} Vo=1.1V,V _{FB} =2.7V 2.0 12		mA
Output Source Current I _{SOURCE} Vo=5.0V,V _{FB} =2.3V -0.5 -1.0		mA
Output Voltage Swing High State V _{OH} V _{FB} =2.3V, R _L =15k to GND 5.0 6.2		V

■ ELECTRICAL CHARACTERISTICS (Cont.)

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{OL}	V_{FB} =2.7V, R_L =15k to V_{REF}		8.0	1.1	V
G∨	(Note 3,4)	2.85	3.0	3.15	V/V
V _{I(THR)}	(Note 3)	0.9	1.0	1.1	V
PSRR	12≤Vcc≤25V (Note 3)		70		dB
I _{I(BIAS)}			-2	-10	μА
t _{D(IN/OUT)}	Current Sense Input to Output		150	300	ns
Vai	I _{SINK} =20mA		0.1	0.4	V
V OL	I _{SINK} =200mA		1.6	2.2	V
Vou	I _{SOURCE} =20mA	13	13.5		V
VOH	I _{SOURCE} =200mA	12	13.4		V
V _{OL (UVLO)}	V _{CC} =6.0V,I _{SINK} =1.0mA		0.1	1.1	V
t _R	T _J =25°C,C _L =1nF		50	150	ns
t _F	T _J =25°C,C _L =1nF		50	150	ns
ECTION					
V_{THR}	UTC UC3842B	14.5	16	17.5	V
	UTC UC3843B	7.8	8.4	9	V
V _{CC(MIN)}	UTC UC3842B	8.5	10	11.5	V
	UTC UC3843B	7.0	7.6	8.2	V
DC		94	96		%
DC				0	%
I _{CC} +I _C	V _{CC} =6.5V for UC3843B V _{CC} =14V for UC3842B		0.3	0.5	mA
I _{CC} +I _C	Note2		12	17	mA
	Vol GV VI(THR) PSRR II(BIAS) tD(IN/OUT) Vol Voh Vol (UVLO) tR tF ECTION VTHR VCC(MIN) DC	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Note: 1. Maximum Package power dissipation limits must be observed.

- 2. Adject V_{CC} above the Startup threshold before setting to 15V.
- 3. This parameter is measured at the latch trip point with V_{FB} =0V.
- 4. Comparator gain is defined as : $G_V \frac{\Delta V \text{ Output Compensation}}{\Delta V \text{ Current Sense Input}}$

■ TYPICAL APPLICATION CIRCUIT

Open Loop Test Circuit

All of the parameters are not all tested in production, although been guaranteed. The timing and bypass capacitors must be connected to pin 5 in a single point ground very closely. To sample the oscillator waveform, the transistor and $5k\Omega$ potentiometer are used, and also can apply an adjustable ramp to I_{SENSE} pin.

Under Voltage Lockout

Under-Voltage Lock-Out: the output driver is biased to a high impedance state. To prevent activating the power switch with output leakage current, pin 6 should be shunted to ground with a bleeder resistor.

Error Amp Configuration

Error amp can source sink up to 0.5mA

■ APPLICATION INFORMATION(Cont.)

Current Sense Circuit

Peak current (I_S) is equaled:

 $I_{S(MAX)}=1.0V/R_S$

There should be a small RC filter to suppress switch transients.

Oscillator Waveforms and Maximum Duty Cycle

 C_T (Oscillator timing capacitor) can be charged by V_{REF} through R_T and discharged by an internal current source. At discharge time, the internal clock signal blanks the output to the low. Both oscillator frequency and maximum duty cycle can be determined by Selection of R_T and C_T . All charge and discharge times can be calculated by the next formulas:

$$t_C$$
=0.55 R_T C_T

$$t_{D} = R_{T}C_{T}I_{n}\left(\frac{0.0063R_{T} - 2.7}{0.0063R_{T} - 4}\right)$$

APPLICATION INFORMATION(Cont.)

Shutdown Techniques

The UTC **UC3842B's** shutdown can be accomplished by two ways: raise pin 3 above 1V; or pull pin 1 below a voltage two diode drops above ground. Either method can cause the PWM comparator's output to be high. Because the PWM latch is reset dominant, the output will remain low until the next clock cycle after the shutdown condition at pins 1 and/or 3 is removed.

Slope Compensation

■ TYPICAL CHARACTERISTICS

Vs. Oscillator Frequency

Vs. Oscillator Frequency

Vs. Oscillator Frequency

Solution

Solution

Solution

Oscillator Frequency

Vs. Oscillator Frequency

Solution

Oscillator Frequency

Oscillator Frequency, fosc (kHz)

Figure 1. Timing Resistor

Figure 3. Oscillator Discharge Current Vs. Temperature

Figure 5. Error Amp Small Signal Transient Response

Figure 2 . Output Deadtime Vs. Oscillator Frequency

Figure 4. Maximum Output Duty Cycle
Vs. Timing Resistor

Figure 6. Error Amp Large Signal Transient Response

Figure 8. Current Sense Input Threshold Vs. Error Amp Output Voltage

■ TYPICAL CHARACTERISTICS(Cont.)

Figure 7. Error Amp Open Loop Gain Phase Vs. Frequency

Figure 9. Reference Voltage Change Vs. Source Current

Figure 10. Reference Short Circuit Current Vs. Temperature

Figure 11. Reference Load Regulation

Figure 12. Reference Line Regulation

■ TYPICAL CHARACTERISTICS(Cont.)

Figure 13. Outrput Saturation Voltage

Figure 14. Output Waveform

Supply Current, Icc

Output Cuss Conduction

Acc=30A

Cr=12bL

L=5c,C

VomANDIV

Figure 16. Supply Current vs. Supply Voltage

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.