TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74HC4051AP,TC74HC4051AF,TC74HC4051AFT TC74HC4052AP,TC74HC4052AF,TC74HC4052AFT TC74HC4053AP,TC74HC4053AF,TC74HC4053AFN,TC74HC4053AFT

TC74HC4051AP/AF/AFT

8-Channel Analog Multiplexer/Demulitiplexer

TC74HC4052AP/AF/AFT

Dual 4-Channel Analog Multiplexer/Demultiplexer

TC74HC4053AP/AF/AFN/AFT

Triple 2-Channel Analog Multiplexer/Demultiplexer

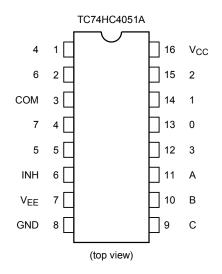
The TC74HC4051A/4052A/4053A are high speed CMOS ANALOG MULTIPLEXER/DEMULTIPLEXER fabricated with silicon gate C²MOS technology. They achieve the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

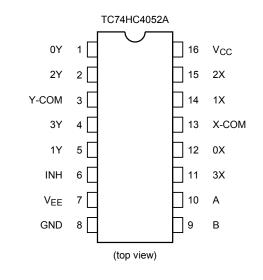
The TC74HC4051A has an 8 channel configuration, the TC74HC4052A has a 4 channel × 2 configuration and the TC74HC4053A has a 2 channel × 3 configuration.

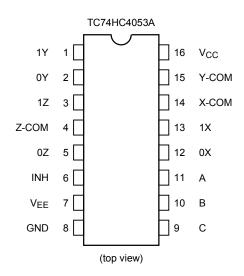
The digital signal to the control terminal turns "ON" the corresponding switch of each channel a large amplitude signal $(V_{CC} - V_{EE})$ can then be switched by the small logical amplitude $(V_{CC} - GND)$ control signal.

For example, in the case of $V_{CC} = 5 V$, GND = 0 V, $V_{EE} = -5 V$, signals between -5 V and +5 V can be switched from the logical circuit with a single power supply of 5 V. As the ON-resistance of each switch is low, they can be connected to circuits with low input impedance.

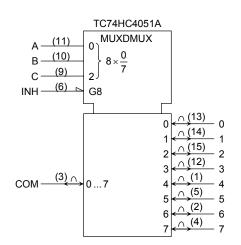
All inputs are equipped with protection circuits against static discharge or transient excess voltage.

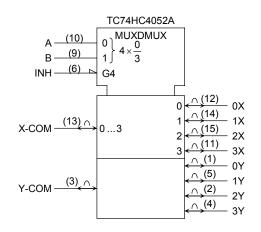

Features

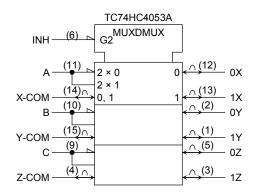

- High speed: $t_{pd} = 15 \text{ ns}$ (typ.) at $V_{CC} = 5 \text{ V}$, $V_{EE} = 0 \text{ V}$
- Low power dissipation: $ICC = 4 \mu A (max)$ at $Ta = 25^{\circ}C$
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- Low ON resistance: $R_{ON} = 50 \Omega$ (typ.) at $V_{CC} V_{EE} = 9 V$
- High noise immunity: THD = 0.02% (typ.) at V_{CC} V_{EE} = 9 V
- Pin and function compatible with 4051/4052/4053B


Weight	
DIP16-P-300-2.54A	: 1.00 g (typ.)
SOP16-P-300-1.27A	: 0.18 g (typ.)
SOP16-P-300-1.27	: 0.18 g (typ.)
SOL16-P-150-1.27	: 0.13 g (typ.)
TSSOP16-P-0044-0.65A	: 0.06 g (typ.)

Note: xxxFN (JEDEC SOP) is not available in Japan TC74HC4051AP, TC74HC4052AP, TC74HC4053AP DIP16-P-300-2.54A TC74HC4051AF, TC74HC4052AF, TC74HC4053AF SOP16-P-300-1.27A मसमस SOP16-P-300-1.27 TC74HC4053AFN SOL16-P-150-1.27 TC74HC4051AFT, TC74HC4052AFT, TC74HC4053AFT TSSOP16-P-0044-0.65A


Pin Assignment

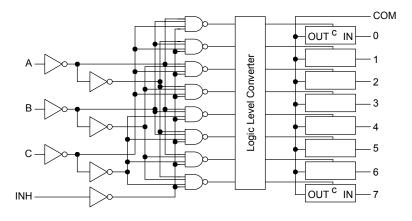




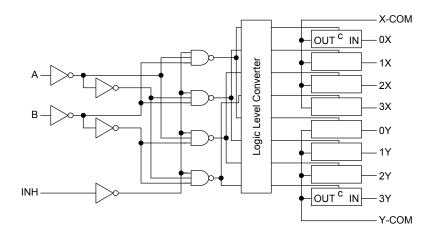
IEC Logic Symbol

Truth Table

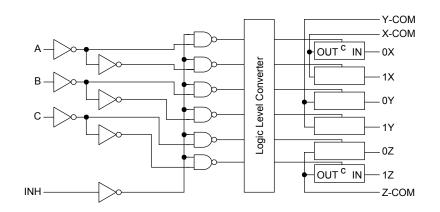
	Control	Inputs		"ON" Channel				
Inhibit	C*	В	А	HC4051A	HC4052A	HC4053A		
L	L	L	L	0	0X, 0Y	0X, 0Y, 0Z		
L	L	L	Н	1	1X, 1Y	1X, 0Y, 0Z		
L	L	Н	L	2	2X, 2Y	0X, 1Y, 0Z		
L	L	Н	Н	3	3X, 3Y	1X, 1Y, 0Z		
L	Н	L	L	4	—	0X, 0Y, 1Z		
L	Н	L	Н	5	_	1X, 0Y, 1Z		
L	Н	Н	L	6	—	0X, 1Y, 1Z		
L	Н	Н	Н	7	_	1X, 1Y, 1Z		
Н	Х	Х	Х	None	None	None		


X: Don't care

*: Except HC4052A


TOSHIBA

System Diagram


TC74HC4051A

TC74HC4052A

TC74HC4053A

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	–0.5 to 7	V
Supply voltage range	V _{CC} -V _{EE}	-0.5 to 13	V
Control input voltage	V _{IN}	-0.5 to V _{CC} + 0.5	V
Switch I/O voltage	V _{I/O}	$V_{\mbox{\scriptsize EE}}-0.5$ to $V_{\mbox{\scriptsize CC}}+0.5$	V
Control input diode current	lick	±20	mA
I/O diode current	I _{OK}	±20	mA
Switch through current	Ι _Τ	±25	mA
DC V _{CC} or ground current	Icc	±50	mA
Power dissipation	PD	500 (DIP) (Note 2)/180 (SOP, TSSOP)	mW
Storage temperature	T _{stg}	-65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Note 2: 500 mW in the range of Ta = -40 to 65° C. From Ta = 65 to 85° C a derating factor of -10 mW/°C should be applied up to 300 mW.

Recommended Operating Conditions (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	2 to 6	V
Supply voltage range	V _{EE}	-6 to 0	V
Supply voltage range	V _{CC} -V _{EE}	2 to 12	V
Control input voltage	V _{IN}	0 to V _{CC}	V
Switch I/O voltage	V _{I/O}	V _{EE} to V _{CC}	V
Operating temperature	T _{opr}	-40 to 85	°C
		0 to 1000 (V _{CC} = 2.0 V)	
Control input rise and fall time	t _r , t _f	0 to 500 (V _{CC} = 4.5 V)	ns
		0 to 400 (V _{CC} = 6.0 V)	

Note: The recommended operating conditions are required to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND.

Electrical Characteristics

DC Characteristics

Characteristics	Test Condition			-	Га = 25°(C	Ta = -40 to 85°C		Unit		
	Symbol			V _{CC} (V)	Min	Тур.	Max	Min	Max		
				2.0	1.50		_	1.50	_		
High-level control input voltage	VIHC	_		4.5	3.15			3.15		V	
1 0				6.0	4.20		_	4.20			
				2.0	_	—	0.50	—	0.50		
Low-level control input voltage	VILC	—		4.5	_	—	1.35	—	1.35	V	
				6.0	_	—	1.80		1.80		
		$V_{IN} = V_{ILC} \text{ or } V_{IHC}$	GND	4.5	_	85	180	—	225		
		$V_{I/O} = V_{CC}$ to V_{EE}	-4.5	4.5	_	55	120	_	150		
		$I_{I/O} \leq 2 \ mA$	-6.0	6.0		50	100	—	125		
ON resistance	R _{ON}	$V_{IN} = V_{ILC} \text{ or } V_{IHC}$ $V_{I/O} = V_{CC} \text{ or } V_{EE}$ $I_{I/O} \le 2 \text{ mA}$	GND	2.0	_	150	—	—	—	Ω	
			GND	4.5	_	70	150	—	190		
			-4.5	4.5	_	50	100	—	125		
		1/0 = 2 11/3	-6.0	6.0	_	45	80	—	100		
Difference of ON		$V_{IN} = V_{ILC} \text{ or } V_{IHC}$	GND	4.5	_	10	30	—	35		
resistance between	ΔR _{ON}	$V_{I/O} = V_{CC}$ to V_{EE}	-4.5	4.5	_	5	12	—	15	Ω	
switches		$I_{I/O} \leq 2 \ mA$	-6.0	6.0	_	5	10	—	12		
Input/output leakage		$V_{OS} = V_{CC} \text{ or } GND$	GND	6.0			±60		±600		
current	IOFF	$V_{IS} = GND \text{ or } V_{CC}$	-6.0	6.0			±100		±1000	nA	
(switch off)		$V_{IN} = V_{ILC} \text{ or } V_{IHC}$		0.0			100		1000		
Switch input leakage current		$V_{OS} = V_{CC}$ or GND	GND	6.0	_		±60	_	±600		
(switch on)	I _{IZ}	$V_{IN} = V_{ILC} \text{ or } V_{IHC}$	-6.0	6.0	_		±100		±1000	nA	
· ,				6.0			10.1		10		
Control input current	I _{IN}	$V_{IN} = V_{CC}$ or GND	GND	6.0	_		±0.1		±1.0	μA	
Quiescent supply current	ICC	$V_{IN} = V_{CC}$ or GND	GND	6.0	_	_	4.0		40.0	μA	
ounon			-6.0	6.0			8.0		80.0	μ	

AC Characteristics (C_L = 50 pF, input: $t_r = t_f = 6 \text{ ns}$, GND = 0 V)

Characteristics	Symbol		Test Cor	Test Condition		-	Ta = 25°(2	Ta –40 to	Unit	
Characteristics	Symbol			$V_{EE}(V)$	V _{CC} (V)	Min	Тур.	Max	Min	Max	Onit
				GND	2.0	_	25	60	_	75	
Phase difference				GND	4.5	_	6	12	_	15	
between input and output	Φι/Ο	All types		GND	6.0	_	5	10	_	13	ns
				-4.5	4.5		4	_	_	_	
				GND	2.0	_	64	225	_	280	
				GND	4.5	_	18	45	_	56	
		4051	(Note 1)	GND	6.0	_	15	38	_	48	
				-4.5	4.5		18	_	_	_	
				GND	2.0	_	64	225	_	280	
	t _{pZL}			GND	4.5	_	18	45	_	56	
Output enable time	t _{pZH}	4052	(Note 1)	GND	6.0	_	15	38	_	48	ns
				-4.5	4.5		18	_	_	_	
		-		GND	2.0	_	50	225	_	280	
				GND	4.5	_	14	45	_	56	
		4053	(Note 1)	GND	6.0	_	12	38	_	48	
				-4.5	4.5		14	_	_	_	
	tpLZ tpHz	4051	(Note 1)	GND	2.0		100	250	_	315	ns
				GND	4.5	_	33	50	_	63	
				GND	6.0	_	28	43	_	54	
				-4.5	4.5		29		_	_	
		4052	(Note 1)	GND	2.0	_	100	250	_	315	
.				GND	4.5	_	33	50	_	63	
Output disable time				GND	6.0	_	28	43	_	54	
				-4.5	4.5		29		_	_	
				GND	2.0	_	95	225	_	280	
				GND	4.5	_	30	45	_	56	
		4053	(Note 1)	GND	6.0	_	26	38	_	48	
				-4.5	4.5		26	_	_	_	
Control input capacitance	C _{IN}	All types		_	_	_	5	10	_	10	pF
		4051				_	36	70	_	70	
COMMON terminal capacitance	C _{IS}	4052		-5.0	5.0	_	19	40	_	40	pF
capacitance	-	4053				_	11	20	_	20	
		4051				_	7	15	_	15	
SWITCH terminal capacitance	C _{OS}	4052		-5.0	5.0	_	7	15	_	15	pF
capacitanice		4053				_	7	15	_	15	
		4051				_	0.95	2	_	2	
Feedthrough	C _{IOS}	4052		-5.0	5.0	_	0.85	2	_	2	pF
capacitance		4053				_	0.75	2	_	2	
		4051					70	_	_	_	
Power dissipation	CPD	4052	(Note 2)	GND	5.0	_	71	_	_	_	pF
capacitance		4053	. ,			_	67	_	_	_	

Note 1: $R_L = 1 \ k\Omega$

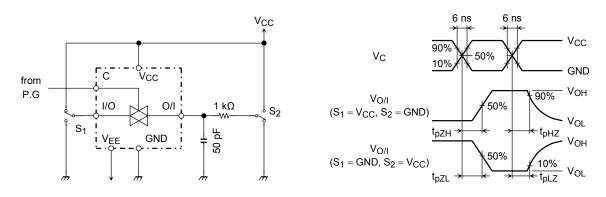
Note 2: C_{PD} is defined as the value of the internal equivalent capacitance of IC which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

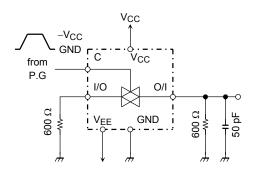
 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

Analog Switch Characteristics (GND = 0 V, Ta = 25°C) (Note 1)

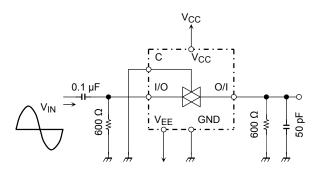
		Test C		Тур.				
Characteristics	Symbol							Unit
Sine wave distortion		$R_L = 10 \ k\Omega$,	V _{IN} = 4	4.0 V _{p-p}	-2.25	2.25	0.025	
(T.H.D)		$C_L = 50 \text{ pF}$	V _{IN} = 8	8.0 V _{p-p}	-4.5	4.5	0.020	%
(1.11.0)		f _{IN} = 1 kHz	$V_{IN} = 1$	11.0 V _{p-p}	-6.0	6.0	0.018	
			All	(Note 2)			120	
			4051	(Note 3)	-2.25	2.25	45	
			4052		-2.25	2.25	70	
		Adjust for voltage to obtain	4053				95	
		Adjust f _{IN} voltage to obtain 0dBm at V _{OS}	All	(Note 2)		4.5	190	
Frequency responce	f _{max}	Increase f_{IN} frequency until dB meter reads $-3dB$ $R_L = 50 \Omega$, $C_L = 10 pF$ $f_{IN} = 1 MHz$, sine wave	4051	(Note 3)	-4.5		70	MHz
(switch on)			4052				110	
			4053				150	
			All	(Note 2)		6.0	200	
			4051	(Note 3)	-6.0		85	
			4052				140	
			4053				190	
		V_{IN} is centered at $(V_{CC}-V_{EE}$	_)/2		-2.25	2.25	-50	
Feed through attenuation		Adjust input for 0dBm			-2.25	4.5	-50 -50	dB
(switch off)		$\textbf{R}_{L}=\textbf{600}~\Omega,~\textbf{C}_{L}=\textbf{50}~\textbf{pF}$			-6.0	6.0	-50	ub
		$f_{IN} = 1 \text{ MHz}$, sine wave			0.0	0.0	00	
Crosstalk		$R_{I} = 600 \Omega, C_{I} = 50 pF$			-2.25	2.25	60	
(control input to signal output)		$f_{IN} = 1$ MHz, square wave ('tr = tr =	6 ns)	-4.5	4.5	140	mV
(·····································				/	-6.0	6.0	200	
Crosstalk		Adjust $V_{\mbox{\scriptsize IN}}$ to obtain 0dBm at	-2.25	2.25	-50			
(between any switches)		$R_L = 600 \ \Omega$, $C_L = 50 \ pF$			-4.5	4.5	-50	dB
· · · ·		$f_{IN} = 1 \text{ MHz}$, sine wave			-6.0	6.0	-50	

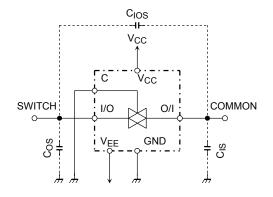

Note 1: These characteristics are determined by design of devices.

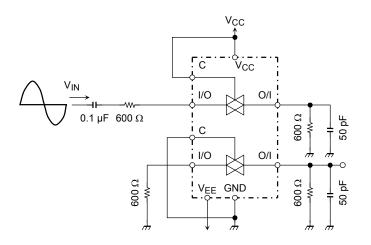
Note 2: Input COMMON terminal, and measured at SWITCH terminal.

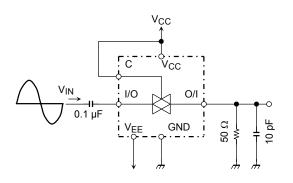

Note 3: Input SWITCH terminal, and measured at COMMON terminal.

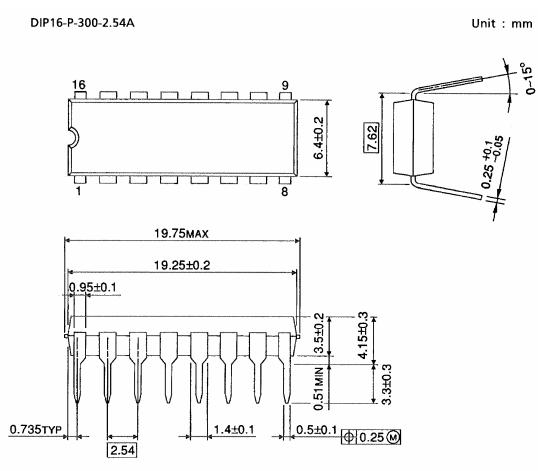
Switching Characteristics Test Circuits


1. t_{pLZ} , t_{pHZ} , t_{pZL} , t_{pZH}


2. Cross Talk (control input-switch output) $f_{IN} = 1$ MHz duty = 50% $t_r = t_f = 6$ ns

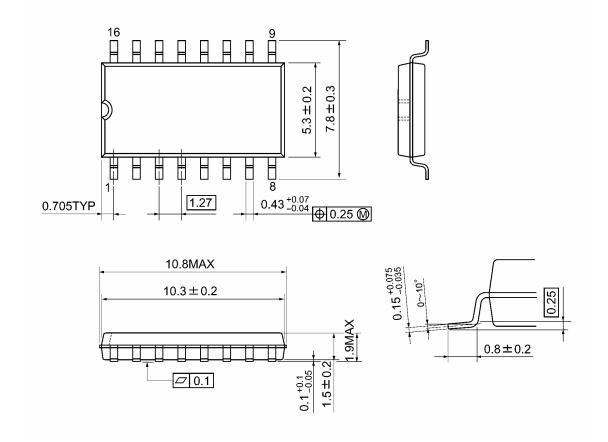

3. Feedthrough Attenuation


 $4. \quad C_{IOS}, C_{IS}, C_{OS}$


5. Cross Talk (between any two switches)

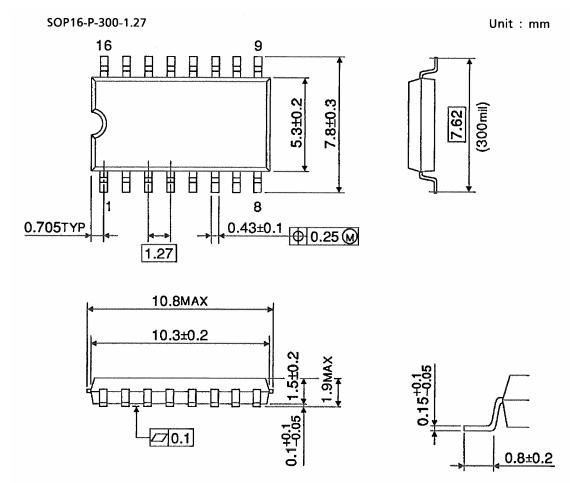
6. Frequency Response (switch on)

Package Dimensions



Weight: 1.00 g (typ.)

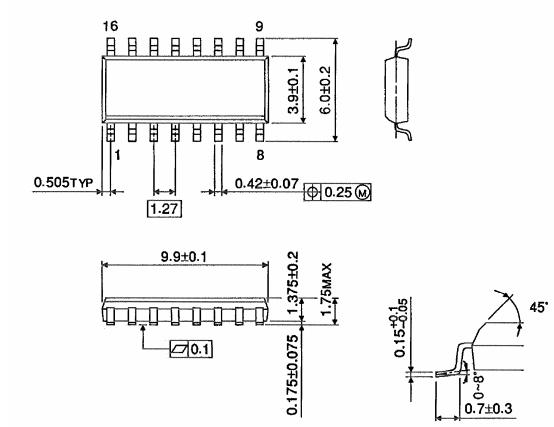
Package Dimensions


SOP16-P-300-1.27A

Unit: mm

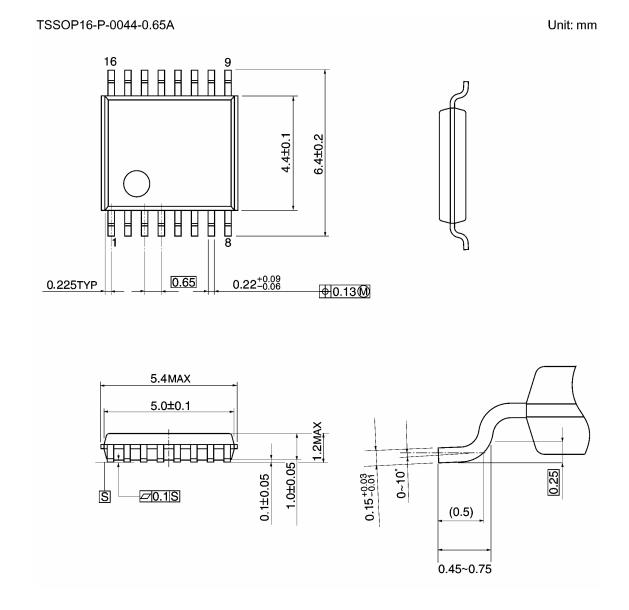
Weight: 0.18 g (typ.)

Package Dimensions



Weight: 0.18 g (typ.)

Package Dimensions (Note)


Unit : mm

Note: This package is not available in Japan.

Weight: 0.13 g (typ.)

Package Dimensions

Weight: 0.06 g (typ.)

Note: Lead (Pb)-Free Packages

DIP16-P-300-2.54A SOP16-P-300-1.27A SOL16-P-150-1.27 TSSOP16-P-0044-0.65A

RESTRICTIONS ON PRODUCT USE

Handbook" etc. 021023 A

060116EBA

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023 B
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023_C
- The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E