

Product Features

- Near Zero Propagation Delay
- 5Ω Switches Connect Between Two Ports
- Fast Switching Speed: 4.5ns max.
- · Permits Hot Insertion
- · Isolation during Power-Off conditions
- B-Port Outputs are precharged by Bias Voltage to minimize signal distortion during live insertion.
- · Package options include:
 - 48-pin 150-mil wide plastic BQSOP (B48)
 - 48-pin 240-mil wide plastic TSSOP (A48)
 - 48-pin 300-mil wide plastic SSOP (V48)

Logic Block Diagram

Truth Table

ŌĒ	Function					
L	A port = B port					
Н	A port = Z , B Port = $BIASV$					

3.3V, Hot Insertion, 20-Bit FET BusSwitch w/Precharged Outputs

Product Description

1

Pericom Semiconductor's PI3B series of logic circuits are produced in the company's advanced 0.35 micron CMOS Technology.

The PI3B16215 provides 20-bits of high-speed bus switching. The low on-state resistance of the switch allows connections to be made with minimal propagation delay. The device also precharges the B-port to a user-selectable bias voltage (BIASV) to minimize live-insertion noise.

The device is organized as dual 10-bit bus switches with individual output-enable (\overline{OE}) inputs. When \overline{OE} is low, the corresponding 10-bit bus switch is on and port A is connected to port B. When \overline{OE} is high, the switch is open, a high-impedance state exists between the two ports, and port B is precharged to BIASV through the equivalent of a $10\text{-k}\Omega$ resistor.

 $\overline{\text{OE}}$ ensure the high-impedance state on power up or power down, $\overline{\text{OE}}$ should be tied to Vcc through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver connected to $\overline{\text{OE}}$.

Product Pin Configuration

PS8190B 11/09/98

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature Range, Tstg	65°C to 150°C
Supply Voltage Range, Vcc	0.5V to 4.6V
Bias Voltage Range, BIASV	0.5V to 4.6V
Input Voltage Range	0.5V to +4.6V
Input Voltage Range DC Output Current	120mA
Power Dissipation	

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating con-ditions for extended periods may affect reliability.

Electrical Characteristics (Over the Operating Range, TA = -40°C to +85°C, Vcc = 3.0V to 3.6V)

Parameter Description		T	Min.	Тур.	Max.	Units	
BIASV	Bias Voltage			0		Vcc	
	High I aval Cantral Innat Valtage	Vc	1.7				
	High-Level Control Input Voltage	Vcc = 2.7V to3.6V					V
V	Law Lavel Control Imput Valtage	Vcc = 2.3V to 2.7V				0.7	
VIL.	Low-Level Control Input Voltage	Vcc = 2.7V to3.6V				0.8	
Vik			II = -18mA			-1.2	
Iı	Input Current	$V_{CC} = 3.6V$	VI = VCC or GND			±5	4
Iozн	High Impedance Output Current	$V_{CC} = 0$	$V_{I} = V_{0} = 0 \text{ to } 3.6V$			10	μΑ
Io	Output Current	$V_{CC} = 3.0V$	BIASV = 2.4V, Vo = 0	0.25			mA
Icc	Quiescent Power Supply Current	$V_{CC} = 3.6V$	Io = 0, VI = VCC or GND			500	
$\Delta { m Icc}^{\S}$	Supply Current	Vcc = 3.6V	One Input at 3V, Other Inputs at VCC or GND			500	μΑ
CIN	Input Capacitance	$V_{I} = 3.0 V \text{ or } 0$		3.0			I7
Coff	A/B Capacitance Switch Off	$V_0 = 3.0 V \text{ or } 0$	= 3.0V or 0 Switch Off				pF
	Switch On Resistance	V- 0	I1 = 64mA		5	8	Ω
R_{ON}^{\P}		$V_{I} = 0$	II = 24mA		5	8	
		$V_{I} = 2.4V \qquad I_{I} = 15\text{mA}$				15	

2

PS8190B 11/09/98

All typical values are at $V_{CC} = 3.3V$ (Unless otherwise noted) TA = 25° C.

This is the increase in supply current for each input (OE only) that is at the specified voltage level rather than Vcc or GND.

Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On state resistance is determined by the lower of the voltages of the two (A or B) terminals.

Switching Characteristics over Operating Range

Switching characteristics over recommended operating free-air temperature range, (unless otherwise noted) (see Figures 1 and 2).

Parameter	Test Conditions	From (Input)	To (Output)	Vcc = 2.5 ±0.2V		Vcc = 2.7V		Vcc = 3.3V ±0.3V		Units	
				Min.	Max.	Min.	Max.	Min.	Max.		
tpd ⁽¹⁾		A or B	B or A						0.25		
tpzh	BIASV = GND	- ŌE	ŌE.	A D						4.5	
t PZL	BIASV = 3V									4.5	ns
tphz	BIASV = GND		DE A or B						5.0		
tplz	BIASV = 3V									5.0	

Note

1. The propagation delay is the calculated RC time of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

Parameter Measurements ($Vcc = 2.5 \pm 0.2V$)

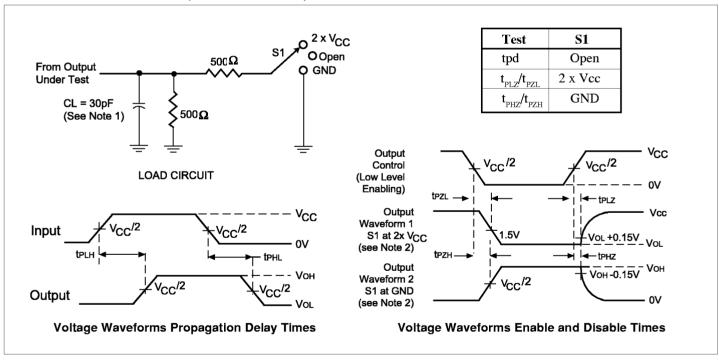


Figure 1. Load Circuit and Voltage Waveforms

Notes

- 1 C_L includes probe and jig capacitance.
- 2. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- 3. All input impulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50\Omega$, $t_r \leq 2$ ns.

3

- 4. The outputs are measured one at a time with one transition per measurement.
- 5. t_{PLZ} and t_{PHZ} are the same as t_{dis}
- 6. t_{PZL} and t_{PZH} are the same as t_{en}
- 7. t_{PLH} and t_{PHL} are the same as t_{nd}

PS8190B 11/09/98

Parameter Measurements (VCC = $2.7 \text{ AND } 3.3\text{V} \pm 0.3\text{V}$)

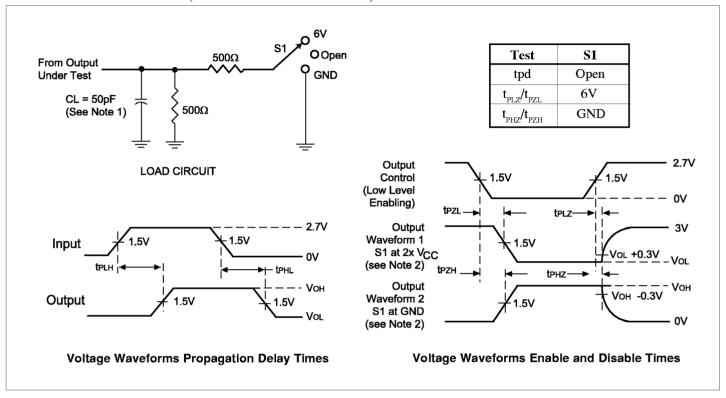


Figure 2. Load Circuit and Voltage Waveforms

Notes

- CL includes probe and jig capacitance.
- Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- All input impulses are supplied by generators having the following characteristics: PRR \leq MHz, $Z_{\Omega} = 50\Omega$, $t_r \leq 2.5$ ns, $t_f \leq 2.5$ ns,
- The outputs are measured one at a time with one transition per measurement. 4.
- t_{TPZ} and t_{PHZ} are the same as t_{dis}
- t_{PZL} and t_{PZH} are the same as t_{en}
- 7. t_{PLH} and t_{PHL} are the same as t_{pd}

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com