SN54LVTH573, SN74LVTH573 3.3-V ABT OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS

SCBS687C - MAY 1997 - REVISED MARCH 1998

- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V **Operation and Low Static Power** Dissipation
- **High-Impedance State During Power Up** and Power Down
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC})
- **Support Unregulated Battery Operation** Down to 2.7 V
- Power Off Disables Outputs, Permitting Live Insertion
- Typical V_{OLP} (Output Ground Bounce) $< 0.8 \text{ V at V}_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}$
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 500 mA Per JESD 17
- **ESD Protection Exceeds 2000 V Per** MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- **Package Options Include Plastic** Small-Outline (DW), Shrink Small-Outline (DB), Thin Very Small-Outline (DGV), and Thin Shrink Small-Outline (PW) Packages, Ceramic Chip Carriers (FK), Ceramic Flat (W) Package, and Ceramic (J) DIPs

SN54LVTH573...J OR W PACKAGE SN74LVTH573 . . . DB, DGV, DW, OR PW PACKAGE (TOP VIEW)

SN54LVTH573...FK PACKAGE (TOP VIEW)

description

These octal latches are designed specifically for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

The eight latches of the 'LVTH573 are transparent D-type latches. While the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the logic levels set up at the D inputs.

A buffered output-enable (OE) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas instruments standard warranty. Production processing does not necessarily include terming of all necessaries.

Copyright @ 1998, Texas Instruments Incorporated On products compliant to MIL-PRF-3633, all parameters are te-unless otherwise noted. On all other products, produc processing does not necessarily include testing of all paramete

SN54LVTH573, SN74LVTH573 3.3-V ABT OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS

SCBS687C - MAY 1997 - REVISED MARCH 1998

description (continued)

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54LVTH573 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74LVTH573 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE (each latch)

	INPUTS	OUTPUT	
OE	LE	D	a
L	Н	Н	Н
L	Н	L	L
L	L	X	Q_0
Н	Χ	X	Z

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SN54LVTH573. SN74LVTH573 3.3-V ABT OCTAL TRANSPARENT D-TYPE LATCHES **WITH 3-STATE OUTPUTS**

SCBS687C - MAY 1997 - REVISED MARCH 1998

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high-impedance	
or power-off state, V _O (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high state, VO (see Note 1)	-0.5 V to $V_{CC} + 0.5$ V
Current into any output in the low state, IO: SN54LVTH573	96 mA
SN74LVTH573	
Current into any output in the high state, IO (see Note 2): SN54LVTH573	48 mA
SN74LVTH573	
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	
Package thermal impedance, θ _{JA} (see Note 3): DB package	115°C/W
DGV package	146°C/W
DW package	97°C/W
PW package	128°C/W
Storage temperature range, T _{stq}	65 C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

- This current flows only when the output is in the high state and V_O > V_{CC}.
 The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

	· · · · · · · · · · · · · · · · · · ·	SN54LV	TH573	SN74LV			
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		2.7	3.6	2.7	3.6	٧
٧ _{IH}	High-level input voltage		2		2		. V
V _{IL}	Low-level input voltage			0.8		8.0	V
VI	Input voltage			5.5		5.5	٧
ЮН	High-level output current			-24	[-32	mA
loL	Low-level output current			48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200		200		μs/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 4: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN54LVTH573, SN74LVTH573 3.3-V ABT OCTAL TRANSPARENT D-TYPE LATCHES **WITH 3-STATE OUTPUTS**

SCBS687C - MAY 1997 - REVISED MARCH 1998

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER TEST CONDITIONS MIN TYPF MAX MIN TYPF MAX VIN MAX VIN MAX VIN MAX VIN MAX MIN TYPF MAX MIN TYPF MAX MIN TYPF MAX MIN TYPF MAX VIN MAX VIN MAX VIN MAX MIN TYPF MAX VIN CCCOLS VCCO-0.2	UNIT	
VOH VOH VOH VOC = 2.7 V to 3.6 V, IOH = -100 μA VCC-0.2 VCC-0.2 VCC = 2.7 V, IOH = -8 mA 2.4 2.4 VCC = 3 V IOH = -24 mA 2 IOH = -32 mA 0.5 IOL = 16 mA 0.4 0.4 IOL = 32 mA 0.5 IOL = 48 mA 0.5 IOL = 48 mA 0.55 IOL = 48 mA 0.55 IOL = 64 mA 0.55 IOL = 75 IOL	UNII	
$ V_{OH} + V_{OC} = 2.7 V, \qquad V_{OH} = -8 \text{mA} \qquad 2.4 \qquad 2.4 $ $ V_{CC} = 3 V \qquad \qquad V_{OH} = -24 \text{mA} \qquad 2 \qquad $	V	
$V_{CC} = 3 \ V \\ V_{CC} = 3 \ V \\ V_{CC} = 3 \ V \\ V_{CC} = 2.7 \ V $		
$V_{CC} = 3 \text{ V} \qquad \begin{array}{ l l l } \hline IOH & = -24 \text{ MA} & 2 \\ \hline IOH & = -32 \text{ MA} & 2 \\ \hline IOH & = -32 \text{ MA} & 0.2 & 0.2 \\ \hline IOH & = -32 \text{ MA} & 0.5 & 0.5 \\ \hline IOH & = -24 \text{ MA} & 0.5 & 0.5 \\ \hline IOH & = -24 \text{ MA} & 0.5 & 0.5 \\ \hline IOH & = -24 \text{ MA} & 0.5 & 0.5 \\ \hline IOH & = -24 \text{ MA} & 0.5 & 0.5 \\ \hline IOH & = -24 \text{ MA} & 0.5 & 0.5 \\ \hline IOH & = -24 \text{ MA} & 0.5 & 0.5 \\ \hline IOH & = -24 \text{ MA} & 0.5 & 0.5 \\ \hline IOH & = -24 \text{ MA} & 0.5 & 0.5 \\ \hline IOH & = -24 \text{ MA} & 0.5 & 0.5 \\ \hline IOH & = -24 \text{ MA} & 0.5 & 0.5 \\ \hline IOH & = -24 \text{ MA} & 0.5 & 0.5 \\ \hline IOH & IOH & 0.4 & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 & 0.4 \\ \hline IOH & IOH & 0.5 & 0.5 \\ \hline IOH & IOH & 0.5 & 0.5 \\ \hline IOH & IOH & 0.5 & 0.5 \\ \hline IOH & IOH & 0.4 & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 \\ \hline IOH & IOH & 0.4 & 0.4 \\ \hline IOH & IOH & 0$] ,	
$V_{OL} = \frac{10H = -32 \text{ mA}}{10L = 100 \mu A} = \frac{2}{0.2}$ $V_{CC} = 2.7 V = \frac{10L = 100 \mu A}{10L = 24 mA} = \frac{0.2}{0.5} = \frac{0.2}{0.5}$ $V_{CC} = 3 V = \frac{10L = 16 mA}{10L = 32 mA} = \frac{0.4}{0.5} = \frac{0.4}{0.5}$ $\frac{10L = 48 mA}{10L = 48 mA} = \frac{0.55}{0.5}$ $\frac{10L = 48 mA}{10L = 64 mA} = \frac{0.55}{0.5}$ $\frac{10L = 64 mA}{10L = 64 mA} = \frac{0.55}{0.5}$ $\frac{10L}{10L} = \frac{10L}{10L} = \frac{10L}{10$	ľ	
$V_{OL} = V_{OL} = V$		
$V_{OL} = \frac{1}{V_{CC}} = 3 \text{ V} \qquad \frac{1}{10L} = 24 \text{ mA} \qquad 0.5 \qquad $		
$V_{CC} = 3 \text{ V} \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$ V_{CC} = 3 \text{ V} $	v	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ľ	
$I_{I} = \begin{bmatrix} V_{CC} = 0 \text{ or } 3.6 \text{ V}, & V_{I} = 5.5 \text{ V} & 10 & 10 \\ \hline Control \text{ inputs} & V_{CC} = 3.6 \text{ V}, & V_{I} = V_{CC} \text{ or GND} & \pm 1 & \pm 1 \\ \hline Data \text{ inputs} & V_{CC} = 3.6 \text{ V} & V_{I} = V_{CC} & 1 & 1 \\ \hline V_{I} = 0 & -5 & -5 \\ \hline I_{Off} & V_{CC} = 0, & V_{I} \text{ or } V_{O} = 0 \text{ to } 4.5 \text{ V} & \pm 100 \\ \hline I_{I(hold)} & Data \text{ inputs} & V_{CC} = 3 \text{ V} & V_{I} = 0.8 \text{ V} & 75 & 75 \\ \hline I_{OZH} & V_{CC} = 3.6 \text{ V}, & V_{O} = 3 \text{ V} & 5 & 5 \\ \hline I_{OZL} & V_{CC} = 3.6 \text{ V}, & V_{O} = 0.5 \text{ V} \text{ to } 3 \text{ V}, & \pm 100^{\circ} \\ \hline I_{OZPU} & & V_{CC} = 0 \text{ to } 1.5 \text{ V}, V_{O} = 0.5 \text{ V} \text{ to } 3 \text{ V}, & \pm 100^{\circ} \\ \hline V_{CC} = 1.5 \text{ V} \text{ to } 0, V_{O} = 0.5 \text{ V} \text{ to } 3 \text{ V}, & \pm 100^{\circ} \\ \hline V_{CC} = 1.5 \text{ V} \text{ to } 0, V_{O} = 0.5 \text{ V} \text{ to } 3 \text{ V}, & \pm 100^{\circ} \\ \hline V_{CC} = 1.5 \text{ V} \text{ to } 0, V_{O} = 0.5 \text{ V} \text{ to } 3 \text{ V}, & \pm 100^{\circ} \\ \hline V_{CC} = 1.5 \text{ V} \text{ to } 0, V_{O} = 0.5 \text{ V} \text{ to } 3 \text{ V}, & \pm 100^{\circ} \\ \hline V_{CC} = 1.5 \text{ V} \text{ to } 0, V_{O} = 0.5 \text{ V} \text{ to } 3 \text{ V}, & \pm 100^{\circ} \\ \hline V_{CC} = 1.5 \text{ V} \text{ to } 0, V_{O} = 0.5 \text{ V} \text{ to } 3 \text{ V}, & \pm 100^{\circ} \\ \hline V_{CC} = 1.5 \text{ V} \text{ to } 0, V_{O} = 0.5 \text{ V} \text{ to } 3 \text{ V}, & \pm 100^{\circ} \\ \hline V_{CC} = 1.5 \text{ V} \text{ to } 0, V_{CC} = 0.5 \text{ V} \text{ to } 3 \text{ V}, & \pm 100^{\circ} \\ \hline V_{CC} = 1.5 \text{ V} \text{ to } 0, V_{CC} = 0.5 \text{ V} \text{ to } 3 \text{ V}, & \pm 100^{\circ} \\ \hline V_{CC} = 1.5 \text{ V} \text{ to } 0, V_{CC} = 0.5 \text{ V} \text{ to } 3 \text{ V}, & \pm 100^{\circ} \\ \hline V_{CC} = 1.5 \text{ V} \text{ to } 0, V_{CC} = 0.5 \text{ V} \text{ to } 3 \text{ V}, & \pm 100^{\circ} \\ \hline V_{CC} = 1.5 \text{ V} \text{ to } 0, V_{CC} = 0.5 \text{ V} \text{ to } 3 \text{ V}, & \pm 100^{\circ} \\ \hline V_{CC} = 1.5 \text{ V} \text{ to } 0, V_{CC} = 0.5 \text{ V} \text{ to } 3 \text{ V}, & \pm 100^{\circ} \\ \hline V_{CC} = 1.5 \text{ V} \text{ to } 0, V_{CC} = 0.5 \text{ V} \text{ to } 3 \text{ V}, & \pm 100^{\circ} \\ \hline V_{CC} = 0.5 \text{ V} \text{ to } 0, V_{CC} = 0.5 \text{ V} \text{ to } 3 \text{ V}, & \pm 100^{\circ} \\ \hline V_{CC} = 0.5 \text{ V} \text{ to } 0, V_{CC} = 0.5 \text{ V} \text{ to } 0, V_{CC} = 0.5 \text{ V} \text{ to } 0, V_{CC} = 0.5 \text{ V} \text{ to } 0, V_{CC} = 0.5 \text{ V} \text{ to } 0, V_{CC} = 0.5 \text{ V} to$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{ c c c c c c c } \hline I_1 & & & & & & & & & & & & & & & & & & &$	⊣	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
V _I = 0	μΑ	
Index Data inputs VCC = 3 V V = 0.8 V 75 75 75 75		
	μА	
V _I = 2 V	μΑ	
IOZL VCC = 3.6 V, VO = 0.5 V -5 -5 IOZPU VCC = 0 to 1.5 V, VO = 0.5 V to 3 V, ±100* ±100* VCC = 1.5 V to 0, VO = 0.5 V to 3 V, ±100* ±100*		
IOZPU VCC = 0 to 1.5 V, VO = 0.5 V to 3 V, VCC = 1.5 V to 0, VO = 0.5 V to 3 V, VCC = 1.5 V to 0, VO = 0.5 V to 3 V,	μA	
VCC = 0 to 1.5 V, VO = 0.5 V to 3 V, $\pm 100^*$ VCC = 1.5 V to 0, VO = 0.5 V to 3 V, $\pm 100^*$	μA	
V _{CC} = 1.5 V to 0, V _O = 0.5 V to 3 V,	μА	
IOZPD OE = don't care	μА	
V _{CC} = 3.6 V, Outputs high 0.19 0.19	mA	
ICC $I_0 = 0$, Outputs low 5		
V _I = V _{CC} or GND Outputs disabled 0.19 0.19	3	
ΔI_{CC}^{\ddagger} $V_{CC} = 3 \text{ V to } 3.6 \text{ V, One input at } V_{CC} - 0.6 \text{ V,}$ 0.2 0.2	mA	
C _i V _i = 3 V or 0 3	рF	
C_0 $V_0 = 3 \text{ V or } 0$ 7	pF	

^{*}On products compliant to MIL-PRF-38535, this parameter is not production tested.

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. ‡ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SN54LVTH573, SN74LVTH573 3.3-V ABT OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS

SCBS687C - MAY 1997 - REVISED MARCH 1998

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

			/TH573		SN74LVTH573					
		V _{CC} = ± 0.3	V _{CC} = 3.3 V ± 0.3 V V _{CC} = 2.7 V		2.7 V	V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _W	Pulse duration, LE high	3		3		3		3		ns
t _{su}	Setup time, data before LE↓	0.7		0.6		0.7	•	0.6		ns
th	Hold time, data after LE↓	1.5		1.7		1.5		1.7		ns

switching characteristics over recommended free-air temperature, $C_L = 50$ pF (unless otherwise noted) (see Figure 1)

			SN54LVTH573									
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} =		V _{CC} =	2.7 V		CC = 3.3 ± 0.3 V	٧ .	Vcc =	2.7 V	UNIT
	,		MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	1
tPLH	D	Q	1.4	4.1		4.7	1.5	2.6	3.9		4.5	ns
t _{PHL}	<i>D</i>		1.4	4.5		4.8	1.5	2.9	3.9		4.5	115
†PLH	LE	Q	1	4.4		5.4	1.9	2.9	4.2		4.9	ns
[†] PHL		u	1.4	4.4		5.1	1.9	2.9	4.2		4.9	115
[†] PZH	ŌĒ	Q	1.4	5.2		6.2	1.5	3.2	5.1		5.9	ns
†PZL	OE.	ď	1.4	5.2		6.2	1.5	3.9	5.1		5.9	110
[†] PHZ	ŌĒ	Q	1.2	5.4		5.7	2	3.5	4.9		5.5	ns
tPLZ			1	5.2		5.2	2	3.2	4.6	1	4.9	113

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

SCBS687C - MAY 1997 - REVISED MARCH 1998

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2.5 ns. $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current and complete.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1998, Texas Instruments Incorporated