TYPES 2N5225, A5T5225 N-P-N SILICON TRANSISTORS BULLETIN NO. DL-S 7311925, MARCH 1973 # SILECT† TRANSISTORS: FOR MEDIUM-CURRENT AUDIO AMPLIFIER APPLICATIONS - For Complementary Use with P-N-P Types 2N5226, A5T5226 - Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration #### mechanical data These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light. #### absolute maximum ratings at 25°C free-air temperature (unless otherwise noted) | Collector-Base Voltage | 25 V* | |--|------------------------| | Collector-Emitter Voltage (See Note 1) | | | Emitter-Base Voltage | | | Continuous Collector Current | | | Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 2) | 625 mW §
_310 mW* | | Storage Temperature Range | to 150°C§
to 135°C* | | Lead Temperature 1/16 Inch from Case for 60 Seconds | {260°C §
230°C* | - NOTES: 1. This value applies when the base-emitter diode is open-circuited. - 2. Derate the 625-mW rating linearly to 150°C free-air temperature at the rate of 5 mW/°C. Derate the 310-mW (JEDEC registered) rating linearly to 135°C free-air temperature at the rate of 2.82 mW/°C. - *The asterisk identifies JEDEC registered data for the 2N5225 only. This data sheet contains all applicable registered data in effect at the time of publication. - [†]Trademark of Texas Instruments. - ‡U.S. Patent No. 3,439,238. - § Texas Instruments guarantees these values in addition to the JEDEC registered values which are also shown. **USES CHIP N24** # TYPES 2N5225, A5T5225 N-P-N SILICON TRANSISTORS ### *electrical characteristics at 25°C free-air temperature | | PARAMETER | TE | TEST CONDITIONS | | | MAX | UNIT | |----------------------|--|--------------------------------------|--------------------------|------------|----|------|------| | V(BR)CBO | Collector-Base Breakdown Voltage | lc = 100 μA, | {E = 0 | | 25 | | ٧ | | V(BR)CEO | Collector-Emitter Breakdown Voltage | I _C = 10 mA, | lg = 0, | See Note 3 | 25 | | V | | V(BR)EBO | Emitter-Base Breakdown Voltage | I _E = 100 μA, | IC = 0 | | 4 | | V | | ІСВО | Collector Cutoff Current | V _{CB} = 15 V, | IE = 0 | | | 300 | nΑ | | I _{EBO} | Emitter Cutoff Current | V _{EB} = 4 V, | IC = 0 | | | 500 | nΑ | | hFE | Static Forward Current Transfer Ratio | V _{CE} = 10 V, | I _C = 10 mA | See Note 3 | 25 | | | | | | V _{CE} = 10 V, | I _C = 50 mA | | 30 | 600 | | | VBE | Base-Emitter Voltage | Ig = 10 mA, | I _C = 100 mA, | See Note 3 | | 1 | 7 | | V _{CE(sat)} | Collector-Emitter Saturation Voltage | l _B = 10 mA, | l _C = 100 mA, | See Note 3 | | 0.8 | V | | h _{fe} | Small-Signal Common-Emitter Forward Current Transfer Ratio | V _{CE} = 10 V, | IC = 50 i.iA, | f = 1 kHz | 30 | 1800 | | | fT | Transition Frequency | V _{CE} = 10 V, | I _C = 20 mA, | See Note 4 | 50 | | MHz | | C _{cb} | Collector-Base Capacitance | V _{CB} = 5 V,
See Note 5 | IE = 0, | f = 1 MHz, | | 20 | ρF | NOTES: 3. These parameters must be measured using pulse techniques. t_w = 300 µs, duty cycle ≤ 2%. - 4. To obtain f_T, the h_{fe} response with frequency is extrapolated at the rate of -6 dB per octave from f = 20 MHz to the frequency at which h_{fe} = 1. - C_{cb} measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge. ## THERMAL INFORMATION ^{*}The asterisk identifies JEDEC registered data for the 2N5225 only.