TYPES 2N5225, A5T5225 N-P-N SILICON TRANSISTORS

BULLETIN NO. DL-S 7311925, MARCH 1973

SILECT† TRANSISTORS: FOR MEDIUM-CURRENT AUDIO AMPLIFIER APPLICATIONS

- For Complementary Use with P-N-P Types 2N5226, A5T5226
- Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Base Voltage	25 V*
Collector-Emitter Voltage (See Note 1)	
Emitter-Base Voltage	
Continuous Collector Current	
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 2)	625 mW § _310 mW*
Storage Temperature Range	to 150°C§ to 135°C*
Lead Temperature 1/16 Inch from Case for 60 Seconds	{260°C § 230°C*

- NOTES: 1. This value applies when the base-emitter diode is open-circuited.
 - 2. Derate the 625-mW rating linearly to 150°C free-air temperature at the rate of 5 mW/°C. Derate the 310-mW (JEDEC registered) rating linearly to 135°C free-air temperature at the rate of 2.82 mW/°C.
- *The asterisk identifies JEDEC registered data for the 2N5225 only. This data sheet contains all applicable registered data in effect at the time of publication.
- [†]Trademark of Texas Instruments.
- ‡U.S. Patent No. 3,439,238.
- § Texas Instruments guarantees these values in addition to the JEDEC registered values which are also shown.

USES CHIP N24

TYPES 2N5225, A5T5225 N-P-N SILICON TRANSISTORS

*electrical characteristics at 25°C free-air temperature

	PARAMETER	TE	TEST CONDITIONS			MAX	UNIT
V(BR)CBO	Collector-Base Breakdown Voltage	lc = 100 μA,	{E = 0		25		٧
V(BR)CEO	Collector-Emitter Breakdown Voltage	I _C = 10 mA,	lg = 0,	See Note 3	25		V
V(BR)EBO	Emitter-Base Breakdown Voltage	I _E = 100 μA,	IC = 0		4		V
ІСВО	Collector Cutoff Current	V _{CB} = 15 V,	IE = 0			300	nΑ
I _{EBO}	Emitter Cutoff Current	V _{EB} = 4 V,	IC = 0			500	nΑ
hFE	Static Forward Current Transfer Ratio	V _{CE} = 10 V,	I _C = 10 mA	See Note 3	25		
		V _{CE} = 10 V,	I _C = 50 mA		30	600	
VBE	Base-Emitter Voltage	Ig = 10 mA,	I _C = 100 mA,	See Note 3		1	7
V _{CE(sat)}	Collector-Emitter Saturation Voltage	l _B = 10 mA,	l _C = 100 mA,	See Note 3		0.8	V
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 10 V,	IC = 50 i.iA,	f = 1 kHz	30	1800	
fT	Transition Frequency	V _{CE} = 10 V,	I _C = 20 mA,	See Note 4	50		MHz
C _{cb}	Collector-Base Capacitance	V _{CB} = 5 V, See Note 5	IE = 0,	f = 1 MHz,		20	ρF

NOTES: 3. These parameters must be measured using pulse techniques. t_w = 300 µs, duty cycle ≤ 2%.

- 4. To obtain f_T, the h_{fe} response with frequency is extrapolated at the rate of -6 dB per octave from f = 20 MHz to the frequency at which h_{fe} = 1.
- C_{cb} measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge.

THERMAL INFORMATION

^{*}The asterisk identifies JEDEC registered data for the 2N5225 only.