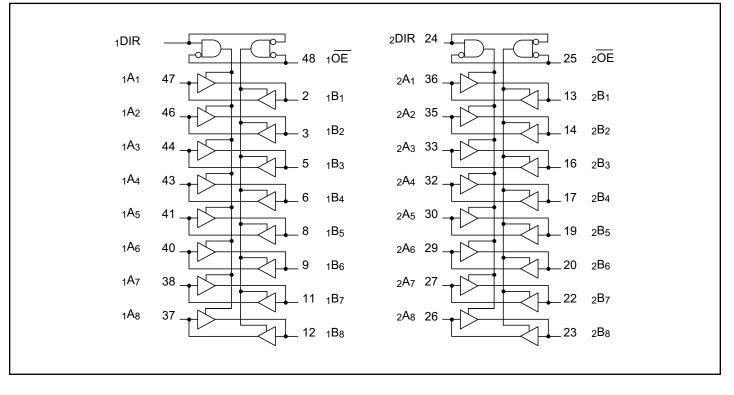


PI74AUC16245

1.8V 16-Bit Bidirectional Transceiver with 3-State Outputs

Features

- PI74AUC16245 is designed for low-voltage operation, $V_{CC} = 0.8V$ to 2.7V, optimized at 1.8V.
- 3.6V I/O Tolerant inputs and outputs
- I_{OFF} supports partial power-down operation
- Latch-Up Performance exceeds 100mA per JESD 78
- ESD Protection Exceeds JESD 22
 - 2000V Human-Body Model (A114-B)
 - 200V Machine Model (A115-A)
- Industrial operation: -40°C to +85°C
- Packaging:
 - 48-pin 240-mil wide plastic TSSOP (A)
 - 48-pin 173-mil wide plastic TVSOP (K)


Description

Pericom Semiconductor's PI74AUC series of logic circuits are produced using the Company's advanced submicron CMOS technology, achieving industry leading speeds.

The PI74AUC16245 is a 16-bit bidirectional transceiver designed for asynchronous two-way communication between data buses. It can be used as a 16-bit tranceiver, or two 8-bit tranceivers. The direction control input pin (_xDIR) determines the direction of data flow through the bidirectional transceiver. The output enable (\overline{OE}) input, when HIGH, disables both A and B ports by placing them in HIGH-Z condition.

To ensure the high-impedance state during power-up or powerdown, \overline{OE} should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current sinking ability of the driver.

The PI74AUC16245 is specified for partial powerdown applications using I_{OFF} . The I_{OFF} circuitry disables the outputs preventing current backflow through the device when it is powered down.

Block Diagram

Maximum Ratings (Above which the useful life may be impaired. For user guidelines, not tested.)

Supply voltage range, V _{CC}
Input voltage range, $V_I^{(1)}$
Voltage range applied to any output in the
high-impedance or power-off state, $V_0^{(1)}$ 0.5V to +3.6V
Output voltage range $V_0^{(1,2)}$ 0.5V to V_{CC} +0.5V
Input clamp current, I_{IK} (V _I < 0)–50mA
Output clamp current, I_{OK} ($V_O < 0$)
Continuous output current, I _O ±20mA
Continuous current through each V _{CC} or GND ±100mA
Package thermal impedance, $\theta_{JA}^{(3)}$: package A 104°C/W
package K 107°C/W
Storage Temperature range, T _{stg} –65°C to 150°C

Pin Configuration

		¬	ı <u> </u>
1DIR [1	48] 10E
1B1 🕻	2	47	D 1A1
1B2 🕻	3	46	1A2
GND [4	45] GND
1B3 🕻	5	44] 1A3
1B4 🕻	6	43	1 1A4
Vcc 🛙	7	42	□ Vcc
1B5 🕻	8	41	1 1A5
1B6 🕻	9	40	1 A6
GND [10	39	GND
1B7 🕻	11	38	1A7
1B8 🕻	12	37] 1A8
2B1 🕻	13	36] 2A1
2B2 🕻	14	35	2A2
GND [15	34] GND
2B3 🕻	16	33	2 B3
2B4 🕻	17	32	2A4
Vcc 🛛	18	31	
2B5 🕻	19	30	2A5
2B6 🕻	20	29	2A6
	21	28] GND
2B7 🕻	22	27	2A7
2B8 🕻	23	26	2A8
2DIR [24	25] 20E

Notes:

- 1. Input negative voltage & output voltage ratings may be exceeded if the input and output current rating are observed.
- 2. This value is limited to 3.6V maximum.
- 3. The package thermal impedance is calculated in accordance with JESD 51.
- 4. Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Pin Description

Pin Name	Description					
XOE	3-State Output Enable Inputs (Active LOW)					
XDIR	Direction Control Input					
XAX	Side A Inputs or 3-State Outputs					
xВx	Side B Inputs or 3-State Outputs					
GND	Ground					
V _{CC}	Power					

Truth Table⁽⁵⁾

Inpu	uts	Outputs
XOE	XDIR	
L	L	Bus B Data to Bus A
L	Н	Bus A Data to Bus B
Н	X	Z

Notes:

5. H = High Signal Level, L= Low Signal Level X = Don't Care, Z = High Impedance

Recommended Operating Conditions⁽¹⁾

Parameter	Description	Operating Condition	Min.	Max.	Units
V _{CC}	Supply Voltage		0.8	2.7	
		$V_{\rm CC} = 0.8 V$	V _{CC}		
V_{IH}	High-Level Input Voltage	$V_{CC} = 1.1 V \text{ to } 1.95 V$	0.65 x V _{CC}		
		$V_{CC} = 2.3 V$ to 2.7 V	1.7		
		$V_{\rm CC} = 0.8 V$		0	V
V_{IL}	Low-Level Input Voltage	$V_{\rm CC} = 1.1 \text{V}$ to 1.95		0.35 x V _{CC}	v
		$V_{CC} = 2.3 V$ to 2.7V		0.7	
VI	Input Voltage		0	3.6	
N 7	Output Welterer	Active State	0	V _{CC}	
VO	Output Voltage	3-State	0	3.6	
		$V_{\rm CC} = 0.8 V$		-0.7	
		$V_{\rm CC} = 1.1 V$		-3	
I _{OH}	High-Level Output Current	$V_{\rm CC} = 1.4 V$		-5	
		$V_{\rm CC} = 1.65 V$		-8	
		$V_{CC} = 2.3 V$		-9	
		$V_{\rm CC} = 0.8 V$		0.7	mA
		$V_{CC} = 1.1 V$		3	
I _{OL}	Low-Level Output Current	$V_{\rm CC} = 1.4 V$		5	
		$V_{\rm CC} = 1.65 V$		8	
		$V_{\rm CC} = 2.3 V$		9	
$\Delta t / \Delta v$	Input Transition Rise or Fall Rate			5	ns/V
T _A	Operating Free-Air Temperature		-40	85	°C

Notes:

1. All unused inputs must be held at V_{CC} or GND to ensure proper device operation.

Parameters	Test Conditions	V _{CC}	Min.	Typ. ⁽¹⁾	Max.	Units	
	$I_{OH} = -100 \mu A$	0.8V to 2.7V	V _{CC} -0.1V				
	$I_{OH} = -0.7 mA$	0.8V		0.55			
V	$I_{OH} = -3mA$	1.1V	0.8				
V _{OH}	I_{OH} = -5mA	1.4V	1				
	$I_{OH} = -8mA$	1.65V	1.2				
	$I_{OH} = -9mA$	2.3V	1.8			v	
	$I_{OL} = 100 \mu A$	0.8V to 2.7V			0.2	v	
	$I_{OL} = 0.7 mA$	0.8V		0.25			
V	$I_{OL} = 3mA$	1.1V			0.3		
V _{OL}	$I_{OL} = 5mA$	1.4V			0.4		
	$I_{OL} = 8mA$	1.65V			0.45		
	$I_{OL} = 9mA$	2.3V			0.6		
I _I ⁽²⁾	$V_I = V_{CC}$ or GND	0 to 2.7V			±5		
I _{OFF}	$V_{\rm I}$ or $V_{\rm O} = 2.7 \rm V$	0V			±10		
I _{OZ} ⁽³⁾	$V_{O} = V_{CC}$ or GND	2.7V			±10	μA	
I _{CC}	$V_{I} = V_{CC}$ or GND, $I_{O} = 0$	0.8V to 2.7V			20		
CI	$V_I = V_{CC}$ or GND	2.5V		3			
C _{IO}	$V_{O} = V_{CC}$ or GND	2.5V		7		pF	

DC Electrical Characteristics (Over the Operating Range, $T_A = -40^{\circ}C + 85^{\circ}C$)

Note:

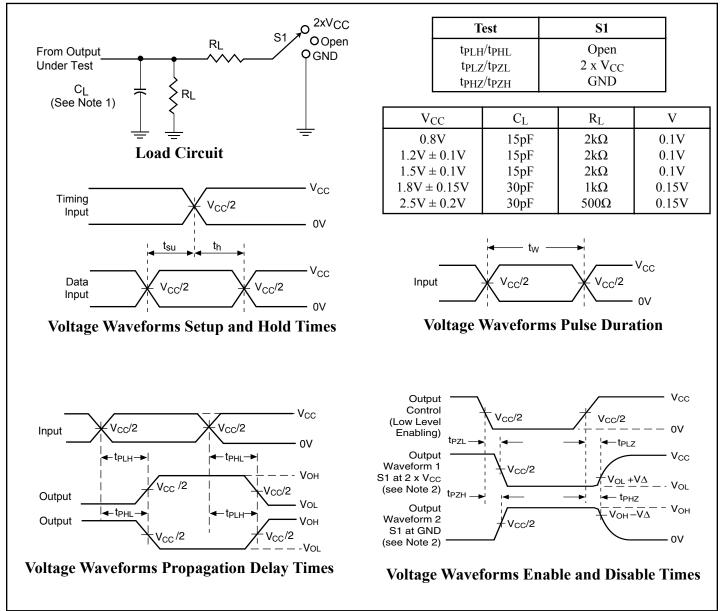
1. Typical values are measured at $T_A = 25^{\circ}C$.

2. Control Inputs.

3. The parameter I_{OZ} includes input leakage current for I/O ports.

Switching Characteristics

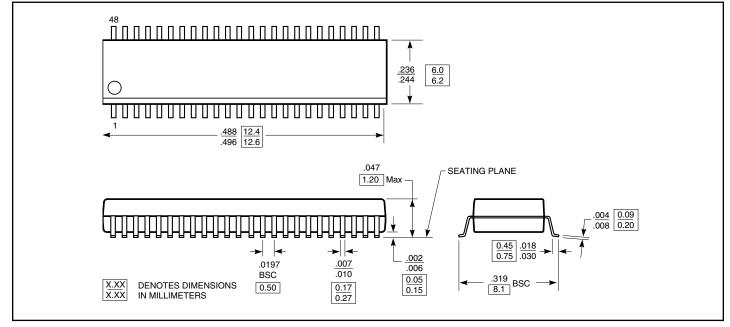
(Over recommended operating free-air temperature range, unless otherwise noted, see Figure 1)


Parameters	From To		V _{CC} = 0.8V	$V_{CC} = \pm 0.$		V _{CC} = ± 0	= 1.5V .1V		CC = 1.8 ± 0.15V		$V_{CC} = \pm 0.$		Units
	(Input) (Output)	Тур.	Min.	Max.	Min.	Max.	Min.	Тур.	Max.	Min.	Max.		
t _{pd}	A or B	B or A	5.6	0.5	3.1	0.5	2	0.5	1.5	2	0.4	1.9	
t _{en}	ŌĒ	A or B	10	0.7	4.6	0.7	3.1	0.7	2.1	3.1	0.7	2.6	ns
t _{dis}	ŌĒ	A or B	12.8	0.8	6.8	0.8	5	0.8	3.4	4.8	0.5	2.9	

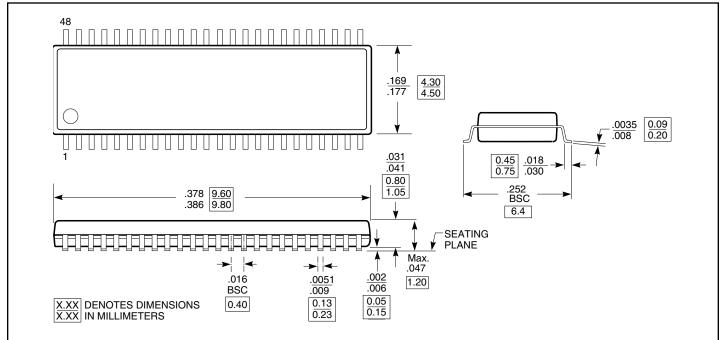
Operating Characteristics, T_A= 25°C

Paramo	eters	Test Conditions	V _{CC} = 0.8V Typical	V _{CC} = 1.2V Typical	V _{CC} = 1.5V Typical	V _{CC} = 1.8V Typical	V _{CC} = 2.5V Typical	Units
C _{pd} Power	Outputs Enabled	$C_{L} = 0 pF, f = 10$	22	23	24	25	29	ъE
Dissipation Capacitance	Outputs Disabled	MHz	1	1	1	1	1	pF

Parameter Measurement Information


Figure 1. Load Circuit and Voltage Waveforms

Notes:


- $1. \quad C_L \text{ includes probe and jig capacitance.}$
- Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- 3. All input pulses are supplied by generators having the following characteristics: $PRR \le 10 \text{ MHz}$, $Z_O = 50\Omega$, slew rate $\ge 1 \text{ V/ns}$
- 4. The outputs are measured one at a time with one transition per measurement.
- 5. t_{PLZ} and t_{PHZ} are the same as t_{dis}
- $6. \quad t_{PZL} \text{ and } t_{PZH} \text{ are the same as } t_{en}$
- 7. t_{PLH} and t_{PHL} are the same as t_{pd}
- 8. All parameters and waveforms are not applicable to all devices.

Packaging Mechanical: 48-pin TSSOP (A)

Packaging Mechanical: 48-pin TSSOP (K)

Ordering Information

Ordering Code	Package Code	Package Description
PI74AUC16245A	А	48-pin, 240-mil wide plastic TSSOP
PI74AUC16245K	К	48-pin, 173-mil wide plastic TVSOP

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com