

AM26LS32B

Quad Differential Line Receiver

The AM26LS32B is a quad line receiver designed to meet the requirements of RS-422 and RS-423, CCITT V.10 and V.11, and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission. The AM26LS32B features an input sensitivity of 200 mV over the common mode input voltage range of -7 V to +12 V.

The AM26LS32B is the first device in the AM26LS32 configuration to guarantee minimum hysteresis and propagation delay skew while maintaining better propagation delay guarantees than the AM26LS32. This allows a more critical analysis of performance in high noise environments and better performance in terms of signal quality, resulting in better system performance.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Am26LS32B

Quad Differential Line Receiver

DISTINCTIVE CHARACTERISTICS

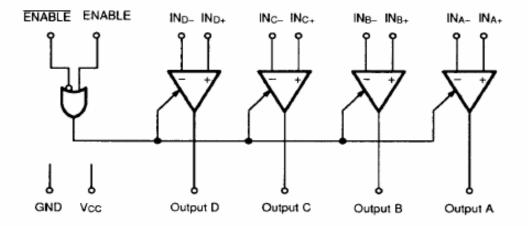
- ±120 mV sensitivity over V_{IN} range of 0 V to 5 V
- ±200 mV sensitivity over Vcm range
- -7 V to +12 V input voltage range differential or common mode
- Guaranteed input voltage hysteresis limits
 - 65 mV minimum
 - 240 mV maximum
- 3 V maximum open circuit input voltage

- Three-state outputs disabled during power-up and power-down
- Maximum guarantees for tpb skew
- All AC and DC parameters guaranteed over COM'L and MiL operating temperature ranges
- Single +5 V supply
- Advanced low-power Schottky processing

GENERAL DESCRIPTION

The Am26LS32B is a quad line receiver designed to meet the requirements of RS-422 and RS-423, CCITT V.10 and V.11, and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission.

The Am26LS32B features an input sensitivity of 200 mV over the common mode input voltage range of -7 V to +12 V.


The Am26LS32B is the first device in the Am26LS32 configuration to guarantee minimum hysteresis and propagation delay skew while maintaining better propagation delay guarantees than the Am26LS32. This al-

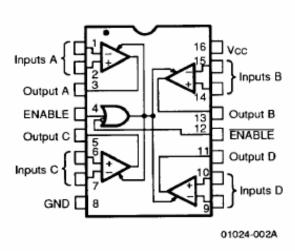
lows a more critical analysis of performance in high noise environments and better performance in terms of signal quality, resulting in better system performance.

The Am26LS32B provides an enable and disable function common to all four receivers. It features three-state outputs with 24 mA sink capability and incorporates a fail safe input-output relationship which keeps the outputs high when the inputs are open.

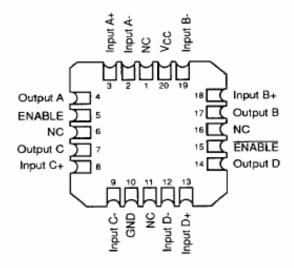
The Am26LS32B is contructed using Advanced Low-Power Schottky processing.

BLOCK DIAGRAM

01024-001B


RELATED AMD PRODUCTS

Part No.	Description
26LS29	Quad Three-State Single Ended RS-423 Line Driver
26LS30	Dual Differential RS-422 Party Line/Quad Single Ended RS-423 Line Driver
26LS33	Quad Differential Line Receiver


Publication# 01024	Rev. B	Amendmenu/0
Issue Date: May 1991		

CONNECTION DIAGRAMS Top View

DIP

LCC

01024-003A

Note:

Pin 1 is marked for orientation.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage 7.0 V
Common Mode Range ±25 V
Differential Input Voltage ±25 V
Enable Voltage 7.0 V
Output Sink Current 50 mA
Storage Temperature Range -65 to +165°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Temperature 0 to +70°C Supply Voltage +4.5 V to +5.5 V

Military (M) Devices

Temperature -55 to +125°C Supply Voltage +4.5 V to +5.5 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

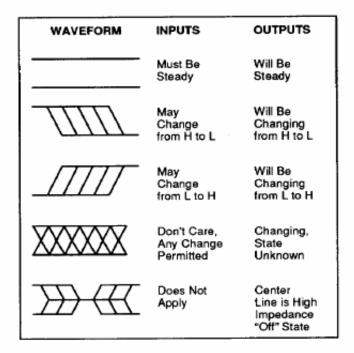
DC CHARACTERISTICS over operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions		Min.	Typ. (Note 1)	Max.	Unit	
Vтн	Differential Input Voltage	Vout = Vol	0 ≤ V _{CM} ≤ +5	V	-100	±60	100	mν
	(Note 5)	or Voн	7 V ≤ Vcm ≤	+12 V	-200		200	
VHYST	Input Hysteresis	Vcc = 5.0 V			65		240	mV
Vioc	Open Circuit Input Voltage				1.5		3.0	٧
Rin	Input Resistance	-15 V ≤ VcM			6.0	9.8		kΩ
	(Note 4)	(One input A						<u> </u>
lin	Input Current (Under Test)	$V_{IN} = +15 V$, $V_{IN} \le +15 V$	Other Input -1	15 V ≤			2.3	mA
lin	Input Current (Under Test)	V _{IN} = -15 V, Other Input -15 V ≤ V _{IN} ≤ +15 V				-2.8	mA	
Vон	Output HIGH Voltage	Vcc = Min., a	$\Delta V_{IN} = +1.0 \text{ V}$	loн = -12 mA	2.0			l v
		VENABLE = 0.	8 V	I _{OH} = -1 mA	2.4			`
Vol	Output LOW Voltage	Vcc = Min.,	ΔVIN = -1.0 V	lo _L = 16 mA			0.4	V
		VENABLE = 0.	8 V	lo _L = 24 mA			0.5	L_ `
VIL	Enable LOW Voltage	(Note 2)				8.0	٧	
ViH	Enable HIGH Voltage	(Note 2)		2.0			٧	
Vic	Enable Clamp Voltage	Vcc = Min., I _{IN} = -18 mA				-1.5	٧	
lo	Off-State (High Impedance)	Vcc = Max.		Vo = 2.4 V			50	μА
	Output Current			Vo = 0.4 V			-50	μΛ
l _{iL}	Enable LOW Current	Vin = 0.4 V, Vcc = Max.			-0.2	-0.36	mA	
lін	Enable HIGH Current	V _{IN} = 2.7 V, V _{CC} = Max.				20	μА	
lı .	Enable Input High Current	V _{IN} = 5.5 V, V _{CC} = Max.				100	μА	
Isc	Output Short Circuit Current	Vo = 0 V, Vcc = Max., ΔViN = +1.0 V		-30	65	-120	mA	
		(Note 3)						
lcc	Power Supply Current	Vcc = Max., All V _{IN} = GND, Outputs Disabled			52	70	mA	

Notes:

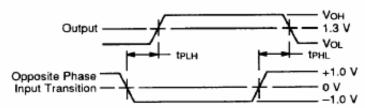
- All typical values are Vcc = 5.0 V, TA = 25°C.
- 2. Input thresholds are tested during DC tests and may be done in combination with testing of other DC parameters.
- 3. Not more than one output should be shorted at a time. Duration of short circuit test should not exceed one second.
- 4. Rin is not directly tested but is correlated. (See Attachment I)
- 5. Input voltage is not tested directly due to tester accuracy limitations but is tester correlated. (See Attachment II)

SWITCHING CHARACTERISTICS (TA = +25°C, Vcc = 5.0 V)

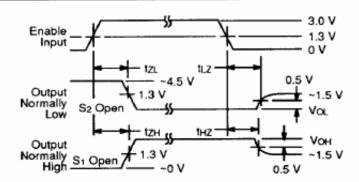

Parameter Symbol	Parameter Description	Test Conditions	Min.	тур.	Max.	Unit
TPLH				16	21	ns
TPHL	Propagation Delay, Input to Output			17	21	ns
tskew	Propagation Delay Skew, tpln - tphl	C _L = 50 pF See test circuit		1.5	3.0	ns
tzı	Control Francisco Falable For Code of			16	22	ns
tz _H	Output Enable Time, ENABLE to Output			10	16	ns
tız	5000	C _L = 5 pF See test circuit		11	18	ns
tHZ	Output Disable Time, ENABLE to Output			13	18	ns

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified

Parameter			Commercial		Military		
Symbol	Parameter Description	Test Conditions	Min.	Max.	Min.	Max.	Unit
t _{PLH}				26		26	ns
tpHL.	Propagation Delay, Input to Output			26		26	ns
tskew	Propagation Delay Skew, tpln - tphl	C _L = 50 pF See test circuit		4.0		4.0	ns
t zL				33		33	ns
tzн	Output Enable Time, ENABLE to Output			22		22	ns
tız		C _L = 5 pF See test circuit		27		27	ns
tHZ	Output Disable Time, ENABLE to Output			27		27	ns


Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Мах.	Unit	
Tristate Delays for ENABLE (TA = +25°C)							
tрzн	Propagation Delay From ENABLE to Output	C_L 50 pF, R_{L1} = 1 k Ω , R_{L2} = 280 Ω			26	ns	
tpzL	Propagation Delay From ENABLE to Output	C_L 50 pF, R_{L1} = 1 k Ω , R_{L2} = 280 Ω			33	ns	
tрнż	Propagation Delay From ENABLE to Output	C_L 5 pF, R_{L1} = 1 k Ω , R_{L2} = 280 Ω			20	ns	
tpLZ	Propagation Delay From ENABLE to Output	$C_L \ 5 \ pF, \ R_{L1} = 1 \ k\Omega,$ $R_{L2} = 280 \ \Omega$			20	ns	
Tristate De	elays for ENABLE (-55°C to	+125°C)					
tрzн	Propagation Delay From ENABLE to Output	$C_L 50 \text{ pF}, R_{L1} = 1 \text{ k}\Omega,$ $R_{L2} = 280 \Omega$			39	ns	
tpzL.	Propagation Delay From ENABLE to Output	C_L 50 pF, R_{L1} = 1 k Ω , R_{L2} = 280 Ω			49	ns	
tрнz	Propagation Delay From ENABLE to Output	$\begin{aligned} C_L & 5 \ pF, \ R_{L1} = 1 \ k\Omega, \\ R_{L2} & = 280 \ \Omega \end{aligned}$			30	ns	
t _{PLZ}	Propagation Delay From ENABLE to Output	C_L 5 pF, R_{L1} = 1 k Ω , R_{L2} = 280 Ω			30	ns	

KEY TO SWITCHING WAVEFORMS

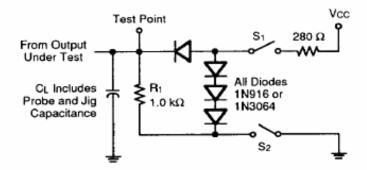

KS000010

SWITCHING WAVEFORMS

Propagation Delay (Notes 1 and 3)

01024-005A

Enable and Disable Times (Notes 2 and 3)


Diagram shown for ENABLE LOW.

01024-006A

- 2. S1 and S2 of Load Circuit are closed except where shown.
- Pulse Generator for All Pulses: Rate ≤ 1.0 MHz; Zo = 50 Ω; tr ≤ 2.5 ns; tr ≤ 2.5 ns.

Notes:

SWITCHING TEST CIRCUIT FOR THREE-STATE OUTPUTS

01024-007A