

3.3V CMOS 18-BIT REGIS-TERED BUS TRANSCEIVER WITH 3-STATE OUTPUTS AND BUS-HOLD

IDT74ALVCH162525

FEATURES:

- 0.5 MICRON CMOS Technology
- Typical tsk(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP, and 0.40mm pitch TVSOP packages
- Extended commercial range of 40°C to + 85°C
- $Vcc = 3.3V \pm 0.3V$, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- Vcc = 2.5V \pm 0.2V
- CMOS power levels (0.4µW typ. static)
- Rail-to-Rail output swing for increased noise margin

Drive Features for ALVCH162525:

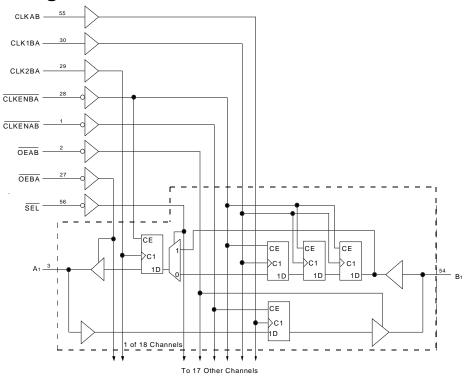
High Output Drivers: ±24mA (A port)
 Balanced Output Drivers: ±12mA (B port)

APPLICATIONS:

- 3.3V High Speed Systems
- · 3.3V and lower voltage computing systems

DESCRIPTION:

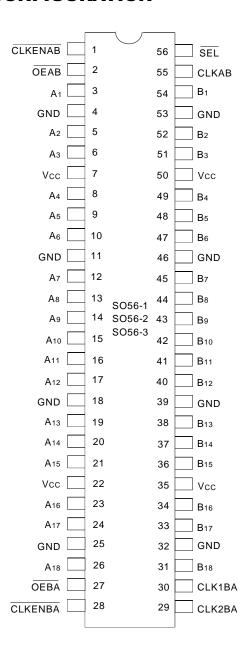
This 18-bit registered bus transceiver is built using advanced dual


metal CMOS technology. Data flow in each direction is controlled by output-enable (OEAB and OEBA) and clock-enable (CLKENAB and CLKENBA) inputs. For the A-to-B data flow, the data flows through a single register. The B-to-A data can flow through a four-stage pipeline register path, or through a single register path, depending on the state of the select (SEL) input. Data is stored in the internal registers on the low-to-high transition of the clock (CLK) input, provided that the appropriate CLKEN inputs are low. The A-to-B data transfer is synchronized to the CLKAB input, and B-to-A data transfer is synchronized with the CLK1BA and CLK2BA inputs.

The ALVCH162525 has series resistors in the device output structure of the "B" port which will significantly reduce line noise when used with light loads. This driver has been designed to drive ± 12 mA at the designated threshold levels. The "A" port has a ± 24 mA driver.

 $\overline{\text{OE}}$ should be tied to Vcc through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The ALVCH162525 has "bus-hold" which retains the inputs' last state whenever the input bus goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.


Functional Block Diagram

EXTENDED COMMERCIAL TEMPERATURE RANGE

MARCH 1999

PIN CONFIGURATION

SSOP/ TSSOP/TVSOP **TOP VIEW**

ABSOLUTE MAXIMUM RATING (1)

Description	Max.	Unit
Terminal Voltage	- 0.5 to + 4.6	V
with Respect to GND		
Terminal Voltage	– 0.5 to	V
with Respect to GND	Vcc + 0.5	
Storage Temperature	- 65 to + 150	°C
DC Output Current	- 50 to + 50	mA
Continuous Clamp Current,	± 50	mA
VI < 0 or VI > VCC		
Continuous Clamp Current, Vo < 0	- 50	mA
Continuous Current through	±100	mA
each Vcc or GND		NEWAZE
	Terminal Voltage with Respect to GND Terminal Voltage with Respect to GND Storage Temperature DC Output Current Continuous Clamp Current, VI < 0 or VI > Vcc Continuous Clamp Current, Vo < 0 Continuous Current through	Terminal Voltage

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	5	7	pF
Соит	Output Capacitance	Vout = 0V	7	9	pF
CI/O	I/O Port Capacitance	VIN = 0V	7	9	pF
NOTE:					NEW16link

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description
CLKAB	Clock Input for the A to B direction
CLK1BA	Clock Input for the B to A pipeline register
CLK2BA	Clock Input for the B to A output register
CLKENBA	Clock Enable for the CLK1BA and CLK2BA clocks (Active LOW)
CLKENAB	Clock Enable for the CLKAB clock (Active LOW)
OEAB	Output Enable for the B port (Active LOW)
OEBA	Output Enable for the A port (Active LOW)
SEL	Select pin for pipelined/non-pipelined mode in
	the B-to-A direction (Active LOW)
Ax	A-to-B Data Inputs or B-to-A 3-State Outputs ⁽¹⁾
Вх	B-to-A Data Inputs or A-to-B 3-State Outputs ⁽¹⁾

1. These pins have "Bus-Hold." All other pins are standard inputs, outputs, or I/Os.

FUNCTION TABLES (1)

A-TO-B STORAGE (OEAB = L)								
Inputs			Output					
CLKENAB	CLKAB	Ax	Вх					
Н	X	X	B0 ⁽²⁾					
L	1	L	L					
L	1	Н	Н					

	B-TO-A STORAGE (OEBA = L)								
		Inputs			Output				
CLKENBA	CLK2BA	CLK1BA	SEL	Вх	Ах				
Н	Х	Х	Х	Х	A0 ⁽²⁾				
L	1	Х	Н	L	L				
L	1	Х	Н	Н	Н				
L	1	1	L	L	L(3)				
L	1	1	L	Н	H(3)				

NOTES:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - ↑ = LOW-to-HIGH Transition
- 2. Output level before the indicated steady-state input conditions were established
- Three CLK1BA edges and one CLK2BA edge are needed to propagate data from B to A when SEL is low.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = - 40°C to +85°C

Symbol	Parameter	Test Co	onditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
Іін	Input HIGH Current	Vcc = 3.6V	VI = VCC	_	_	± 5	μA
lıL	Input LOW Current	Vcc = 3.6V	VI = GND	_	_	± 5	
lozh	High Impedance Output Current	Vcc = 3.6V	Vo = Vcc	_	_	± 10	μA
lozl	(3-State Output pins)		Vo = GND	_	_	± 10	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = - 18mA		_	- 0.7	- 1.2	V
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL		Vcc = 3.6V		_	0.1	40	μA
Іссн	Quiescent Power Supply Current	VIN = GND or Vcc					
Iccz							
Δ lcc	Quiescent Power Supply	One input at Vcc - 0.6V,		_	_	750	μA
	Current Variation	other inputs at Vcc or GND					NEW16link

NOTE:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Tes	Min.	Typ. ⁽²⁾	Max.	Unit	
Івнн	Bus-Hold Input Sustain Current	Vcc = 3.0V	VI = 2.0V	- 75	_		μΑ
Івнь			VI = 0.8V	75	_	_	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	- 45	_	_	μA
IBHL			VI = 0.7V	45	_	_	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	_	_	± 500	μA
Івньо							

NOTES:

NEW16link

- 1. Pins with Bus-hold are identified in the pin description.
- 2. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS (A PORT)

Symbol	Parameter	Test Cor	Min.	Max.	Unit	
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc - 0.2	_	V
		Vcc = 2.3V	Iон = - 6mA	2	-	
		Vcc = 2.3V	IOH = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3.0V		2.4	_	
		Vcc = 3.0V	IOH = - 24mA	2	-	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IOL = 0.1mA	_	0.2	٧
		Vcc = 2.3V	IOL = 6mA		0.4	
			IOL = 12mA	-	0.7	
		Vcc = 2.7V	IoL = 12mA	_	0.4	
		VCC = 3.0V	IOL = 24mA	_	0.55	NEW (Pal

NOTE:

NEW16link

OUTPUT DRIVE CHARACTERISTICS (B PORT)

Symbol	Parameter	Test Co	Min.	Max.	Unit	
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc - 0.2	_	V
		Vcc = 2.3V	IOH = -4mA	1.9	_	
			IOH = -6mA	1.7	_	
		Vcc = 2.7V	IOH = -4mA	2.2	_	
			IOH = -8mA	2	_	
		Vcc = 3.0V	IOH = -6mA	2.4	_	
			IOH = - 12mA	2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IoL = 4mA	_	0.4	
			IoL = 6mA	_	0.55	
		Vcc = 2.7V	I _{OL} = 4mA	_	0.4	
			IoL = 8mA	_	0.6	
		Vcc = 3.0V	IoL = 6mA	_	0.55	1
			IoL = 12mA	-	0.8	NEW14link

NOTE:

NEW16link

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to + 85°C.

VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate VCC range. TA = − 40°C to + 85°C.

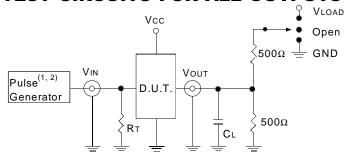
OPERATING CHARACTERISTICS, $T_A = 25$ °C

			Vcc = 2.5V ± 0.2V	$Vcc = 3.3V \pm 0.3V$	
Symbol	Parameter	Test Conditions	Typical	Typical	Unit
CPD	Power Dissipation Capacitance	CL = 0pF, f = 10Mhz	_	160	pF
	Outputs enabled				ρı
CPD	Power Dissipation Capacitance		_	160	pF
	Outputs disabled				ρг

SWITCHING CHARACTERISTICS (A AND B PORTS)⁽¹⁾

		Vcc = 2.5	5V ± 0.2V	Vcc =	Vcc = 2.7V		3V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
fMAX		120	_	125	_	150	_	MHz
tplh	Propagation Delay	1	5.5	_	5.4	1	4.7	ns
tphl	CLKAB to Bx							
tplh	Propagation Delay	1	4.5	_	4.4	1	4.2	ns
tPHL	CLK2BA to Ax					_		-
tPZH	Output Enable Time	1	6.7	_	6.8	1	5.7	ns
tPZL	OEAB to Bx Output Enable Time	1	6.1		6.1	1	5.1	no
tpzh tpzl	OEBA to Ax	1	0.1	_	0.1	1	5.1	ns
tPHZ	Output Disable Time	1	6.3	_	5.4	1	4.9	ns
tPLZ	OEAB to Bx		0.0				,	
tphz	Output Disable Time	1	6.3	_	5.4	1	4.9	ns
tplz	OEBA to Ax							
tsu	Setup Time, Ax data before CLKAB↑	1.3	_	1.3	_	1.3	_	ns
tsu	Setup Time, Bx data before CLK2BA↑	2.1	_	1.8	_	1.7	_	ns
tsu	Setup Time, Bx data before CLK1BA↑	1.3	_	1.2	_	1.1	_	ns
tsu	Setup Time, SEL before CLK2BA↑	3.3	_	3.3	_	3.3	_	ns
tsu	Setup Time, CLKENAB before CLKAB↑	2.1	_	1.9	_	1.6	_	ns
tsu	Setup Time, CLKENBA before CLK1BA↑	2.7	_	2.5	_	2.1	_	ns
tsu	Setup Time, CLKENBA before CLK2BA↑	2.7	_	2.5	_	2.2	_	ns
tн	Hold Time, Ax data after CLKAB↑	0.7	_	0.4	_	0.9	_	ns
tн	Hold Time, Bx data after CLK2BA↑	0.4	_	0	_	0.6	_	ns
tн	Hold Time, Bx data after CLK1BA↑	0.8	_	0.4	_	1	_	ns
tн	Hold Time, SEL after CLK2BA↑	0	_	0	_	0.1	_	ns
tн	Hold Time, CLKENAB after CLKAB↑	0.1	_	0.3	_	0.3	_	ns
tн	Hold Time, CLKENBA after CLK1BA↑	0	_	0	_	0.1	_	ns
tн	Hold Time, CLKENBA after CLK2BA↑	0	_	0	_	0	_	ns
tw	Pulse Duration, CLK HIGH or LOW	3.2	_	3.2	_	3	_	ns
tsk(o)	Output Skew ⁽²⁾	_	_	_	_	_	500	ps
		1			1	1	1	

NOTES:


- 1. See test circuits and waveforms. $T_A = -40$ °C to +85°C.
- 2. Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS:

TEST CONDITIONS

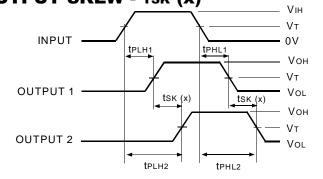
	<u> </u>			
Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	Vcc ⁽¹⁾ = 2.7V	$Vcc^{(2)} = 2.5V \pm 0.2V$	Unit
VLOAD	6	6	2 x Vcc	V
VIH	2.7	2.7	Vcc	٧
V T	1.5	1.5	Vcc/2	٧
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF
				NEW16link

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

CL= Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to Zout of the Pulse Generator.


NOTES:

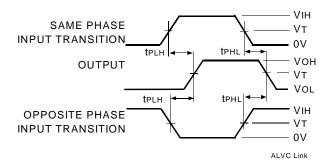
- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain	Vload
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open
<u> </u>	NFW16lir

OUTPUT SKEW - TSK (X)

tsk(x) = |tplh2 - tplh1| or |tphl2 - tphl1|


ALVC Link

ALVC Link

NOTES:

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY

ENABLE AND DISABLE TIMES

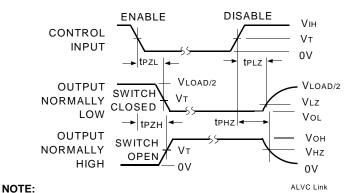
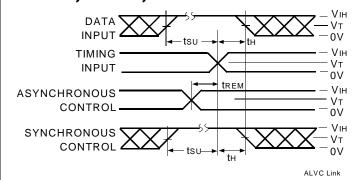
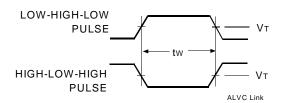
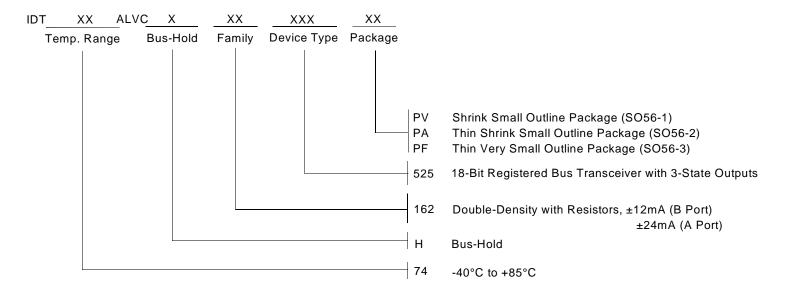




Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.


SET-UP, HOLD, AND RELEASE TIMES

PULSE WIDTH

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*