

54ABT/74ABT646 Octal Transceivers and Registers with TRI-STATE® Outputs

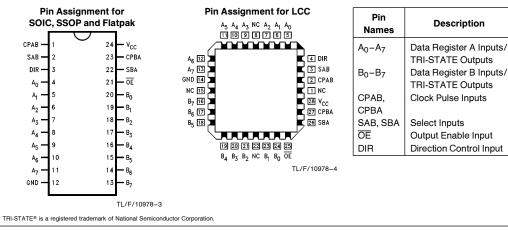
General Description

The 'ABT646 consists of bus transceiver circuits with TRI-STATE, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes to a high logic level. Control \overline{OE} and direction pins are provided to control the transceiver function. In the transceiver mode, data present at the high impedance port may be stored in either the A or the B register or in both. The select controls can multiplex stored and real-time (transparent mode) data. The direction control determines which bus will receive data when the enable control \overline{OE} is Active LOW. In the isolation mode (control \overline{OE} HIGH), A data may be stored in the A register.

Features

- Independent registers for A and B buses
- Multiplexed real-time and stored data
- A and B output sink capability of 64 mA, source capability of 32 mA
- Guaranteed output skew
- Guaranteed multiple output switching specifications
- Output switching specified for both 50 pF and 250 pF loads
- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle

Pin Descriptions

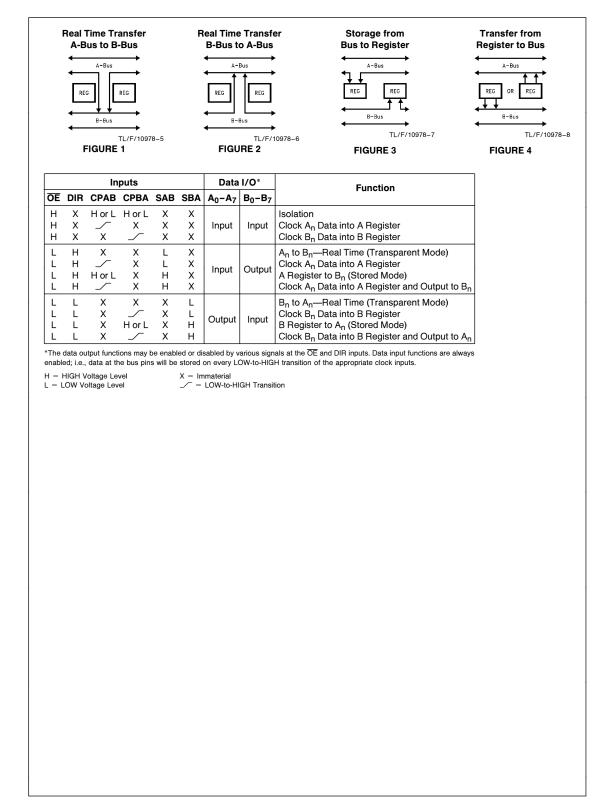

- Nondestructive hot insertion capability
- Standard Military Drawing (SMD) 5962-9457701

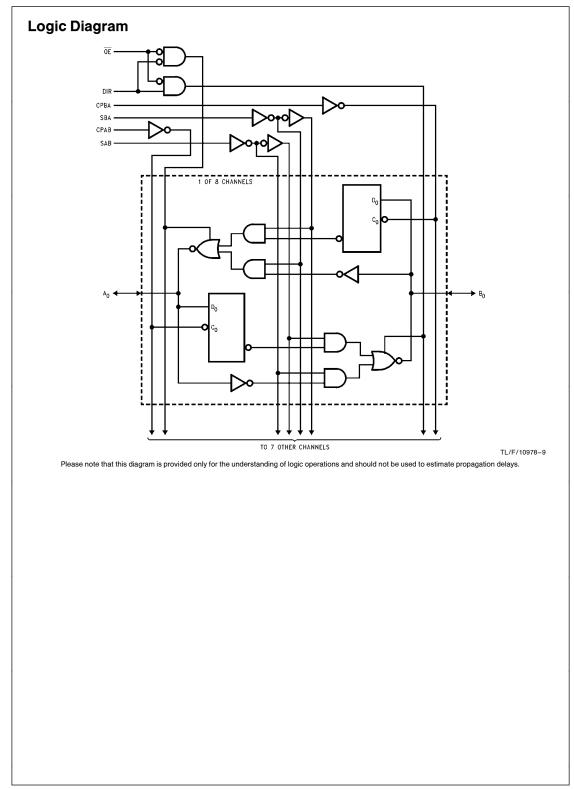
Commercial	Military	Package Number	Package Description
74ABT646CSC (Note 1)		M24B	24-Lead (0.300" Wide) Molded Small Outline, JEDEC
	54ABT646J/883	J24A	24-Lead Ceramic Dual-In-Line
74ABT646CMSA (Note 1)		MSA24	24-Lead Molded Shrink Small Outline, EIAJ Type II
	54ABT646W/883	W24C	24-Lead Cerpak
	54ABT5646E/883	E28A	28-Lead Ceramic Leadless Chip Carrier, Type C
74ABT646CMTC (Notes 1, 2)		MTC24	24-Lead Molded Thin Shrink Small Outline, JEDEC

Note 1: Devices also available in 13" reel. Use suffix = SCX, MSAX and MTCX.

Note 2: Contact factory for package availability.

Connection Diagrams




RRD-B30M96/Printed in U. S. A.

http://www.national.com

G 4ABT/74ABT646 Octal Transceivers and Registers with TRI-STATE Outputs

August 1996

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. + 150°C

Storage Temperature	-65°C to +150°C				
Ambient Temperature under Bias	-55°C to +125°C				
Junction Temperature under Bias					
Ceramic	-55°C to +175°C				
Plastic	-55°C to +150°C				
V _{CC} Pin Potential to					
Ground Pin	-0.5V to $+7.0V$				
Input Voltage (Note 2)	-0.5V to $+7.0V$				
Input Current (Note 2)	-30 mA to $+5.0$ mA				
Voltage Applied to Any Output					
in the Disable or Power-Off State	-0.5V to +5.5V				
in the HIGH State	- 0.5V to V _{CC}				
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under					

Current Applied to Output in LOW State (Max) twice the rated I_{OL} (mA) DC Latchup Source Current Over Voltage Latchup (I/O)

-500 mA

10V

Recommended Operating Conditions

Free Air Ambient Temperature	
Military	-55°C to +125°C
Commercial	-40°C to +85°C
Supply Voltage	
Military	+4.5V to +5.5V
Commercial	+4.5V to +5.5V
Minimum Input Edge Rate	$(\Delta V / \Delta t)$
Data Input	50 mV/ns
Enable Input	20 mV/ns
Clock Input	100 mV/ns

these conditions is not implied. Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Cumhal	Devementer	ABT646			11	v	O a malifica ma
Symbol	Parameter	Min	Тур	Мах	Units	V _{CC}	Conditions
V _{IH}	Input HIGH Voltage	2.0			V		Recognized HIGH Signal
V _{IL}	Input LOW Voltage			0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	$I_{IN} = -18$ mA (Non I/O Pins)
V _{OH}	Output HIGH Voltage 54ABT/74ABT 54ABT 74ABT	2.5 2.0 2.0			v	Min	$\begin{array}{l} I_{OH} = -3 \text{mA}, (A_n, B_n) \\ I_{OH} = -24 \text{mA}, (A_n, B_n) \\ I_{OH} = -32 \text{mA}, (A_n, B_n) \end{array}$
V _{OL}	Output LOW Voltage 54ABT 74ABT			0.55 0.55	v	Min	$I_{OL} = 48 \text{ mA}, (A_n, B_n)$ $I_{OL} = 64 \text{ mA}, (A_n, B_n)$
V _{ID}	Input Leakage Test	4.75			v	0.0	$I_{ID} = 1.9 \ \mu$ A, (Non-I/O Pins) All Other Pins Grounded
Ι _{ΙΗ}	Input HIGH Current			5 5	μΑ	Max	$\begin{array}{l} V_{IN} = 2.7V \mbox{ (Non-I/O Pins) (Note 2)} \\ V_{IN} = V_{CC} \mbox{ (Non-I/O Pins)} \end{array}$
I _{BVI}	Input HIGH Current Breakdown Test			7	μΑ	Max	$V_{IN} = 7.0V$ (Non-I/O Pins)
I _{BVIT}	Input HIGH Current Breakdown Test (I/O)			100	μΑ	Max	$V_{\rm IN}=5.5V~(A_{\rm n},B_{\rm n})$
IIL	Input LOW Current			-5 -5	μΑ	Max	$\begin{array}{l} V_{IN} = 0.5 V \mbox{ (Non-I/O Pins) (Note 2)} \\ V_{IN} = 0.0 V \mbox{ (Non-I/O Pins)} \end{array}$
I _{IH} + I _{OZH}	Output Leakage Current			50	μA	0V-5.5V	$V_{OUT} = 2.7V (A_n, B_n); \overline{OE} = 2.0V$
$I_{IL} + I_{OZL}$	Output Leakage Current			-50	μΑ	0V-5.5V	$V_{OUT} = 0.5V (A_n, B_n); \overline{OE} = 2.0V$
los	Output Short-Circuit Current	-100		-275	mA	Max	$V_{OUT} = 0V (A_n, B_n)$
ICEX	Output HIGH Leakage Current			50	μΑ	Max	$V_{OUT} = V_{CC} (A_n, B_n)$
I _{ZZ}	Bus Drainage Test			100	μΑ	0.0V	$V_{OUT} = 5.5V (A_n, B_n);$ All Others GND
ICCH	Power Supply Current			250	μΑ	Max	All Outputs HIGH
I _{CCL}	Power Supply Current			30	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply Current			50	μΑ	Max	Outputs TRI-STATE; All Others GND
ICCT	Additional I _{CC} /Input			2.5	mA	Max	$V_{\rm I} = V_{\rm CC} - 2.1 V$ All Other Outputs at $V_{\rm CC}$ or GND
ICCD	Dynamic I _{CC} No Load (Note 2)			0.18	mA/MHz	Мах	Outputs Open \overline{OE} and DIR = GND, Non-I/O = GND or V _{CC} (Note 1) One Bit toggling, 50% duty cycle

DC Electrical Characteristics (SOIC package) (Continued)									
Symbol	Parameter	Min	Тур	Max	Units	v _{cc}	Conditions $C_L = 50 \text{ pF}, R_L = 500 \Omega$		
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}		0.6	0.8	V	5.0	T _A = 25°C (Note 1)		
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	-1.2	-0.9		V	5.0	T _A = 25°C (Note 1)		
V _{OHV}	Minimum High Level Dynamic Output Voltage	2.5	3.0		V	5.0	T _A = 25° (Note 3)		
V _{IHD}	Minimum High Level Dynamic Input Voltage	2.2	1.8		V	5.0	T _A = 25°C (Note 2)		
V _{ILD}	Maximum Low Level Dynamic Input Voltage		0.8	0.5	V	5.0	T _A = 25°C (Note 2)		

Note 1: Max number of outputs defined as (n). n - 1 data inputs are driven 0V to 3V. One output at LOW. Guaranteed, but not tested. Note 2: Max number of data inputs (n) switching. n - 1 inputs switching 0V to 3V. Input-under-test switching: 3V to theshold (V_{ILD}), 0V to threshold (V_{IHD}). Guaranteed, but not tested.

Note 3: Max number of outputs defined as (n). n - 1 data inputs are driven 0V to 3V. One output HIGH. Guaranteed, but not tested.

AC Electrical Characteristics (SOIC and SSOP package)

			74ABT		54 A	вт	74A	вт	
Symbol	Parameter	$\begin{array}{c} T_{A}=+25^{\circ}C\\ Parameter\\ V_{CC}=+5.0V\\ C_{L}=50~pF \end{array}$			$T_{A} = -55^{\circ}C$ $V_{CC} = 4.$ $C_{L} = 1$	5V-5.5V	$\begin{array}{l} {T_A} = \; -40^\circ {C} \; {to} \; +85^\circ {C} \\ {V_{CC}} = \; 4.5 {V} {-5.5V} \\ {C_L} = \; 50 \; {pF} \end{array}$		Units
		Min	Тур	Мах	Min	Мах	Min	Мах	
f _{max}	Max Clock Frequency	200			200		200		MHz
t _{PLH}	Propagation Delay	1.7	3.0	5.6	2.2	8.8	1.7	5.6	ns
t _{PHL}	Clock to Bus	1.7	3.4	5.6	1.7	8.8	1.7	5.6	
t _{PLH}	Propagation Delay	1.5	2.6	4.8	1.5	7.9	1.5	4.8	ns
t _{PHL}	Bus to Bus	1.5	3.0	4.8	1.5	7.9	1.5	4.8	
t _{PLH}	Propagation Delay	1.5	3.0	5.9	1.5	8.1	1.5	5.9	ns
t _{PHL}	SBA or SAB to A _n to B _n	1.5	3.4	5.9	1.5	8.9	1.5	5.9	
t _{PZH}	Enable Time	1.5	3.2	6.3	1.0	7.3	1.5	6.3	ns
t _{PZL}	OE to A _n or B _n	1.5	3.5	6.3	1.9	8.8	1.5	6.3	
t _{PHZ} t _{PLZ}	Disable Time \overline{OE} to A_n or B_n	1.5 1.5	3.7 3.2	6.0 6.0	1.5 1.5	9.3 9.3	1.5 1.5	6.0 6.0	ns
t _{PZH}	Enable Time	1.5	3.4	6.3	1.0	7.7	1.5	6.3	ns
t _{PZL}	DIR to A _n or B _n	1.5	3.7	6.3	2.2	9.5	1.5	6.3	
t _{PHZ}	Disable Time	1.5	3.8	6.0	1.5	8.7	1.5	6.0	ns
t _{PLZ}	DIR to A _n or B _n	1.5	3.2	6.0	1.5	9.2	1.5	6.0	

AC Operating Requirements

		74ABT		54	АВТ	74ABT		
Symbol	ol Parameter $ \begin{array}{c} T_{A}=+25^{\circ}C\\ V_{CC}=+5.0V\\ C_{L}=50pF \end{array} $		$V_{CC} = 4$	C to + 125°C I.5V-5.5V 50 pF	$\label{eq:T_A} \begin{array}{l} \textbf{T}_{A} = -40^{\circ}\text{C to} + 85^{\circ}\text{C} \\ \textbf{V}_{CC} = 4.5\text{V} - 5.5\text{V} \\ \textbf{C}_{L} = 50 \ \text{pF} \end{array}$		Units	
		Min	Мах	Min	Max	Min	Мах	
t _S (H) t _S (L)	Setup Time, HIGH or LOW Bus to Clock	1.5		1.5	3.0	1.5		ns
t _H (H) t _H (L)	Hold Time, HIGH or LOW Bus to Clock	1.0		1.0	1.0	1.0		ns
	Pulse Width, HIGH or LOW	3.0		3.0	4.0	3.0		ns

		74	ABT	74	АВТ	74	ABT	
Symbol Parameter		$ \begin{array}{c} T_{A}=-40^{\circ}C\ to\ +85^{\circ}C\\ V_{CC}=4.5V-5.5V\\ C_{L}=50\ pF\\ 8\ Outputs\ Switching\\ (Note\ 4) \end{array} $		$\begin{array}{l} T_{A}=-40^{\circ}\text{C to}+85^{\circ}\text{C}\\ V_{CC}=4.5\text{V}-5.5\text{V}\\ C_{L}=250\ \text{pF}\\ 1\ \text{Output}\ \text{Switching}\\ (\text{Note}\ 5) \end{array}$		$\begin{array}{c} T_{A}=-40^{\circ}\text{C to}+85^{\circ}\text{C}\\ V_{CC}=4.5\text{V}-5.5\text{V}\\ C_{L}=250\text{ pF}\\ 8\text{ Outputs Switching}\\ (\text{Note 6}) \end{array}$		Units
		Min	Мах	Min	Мах	Min	Мах]
t _{PLH} t _{PHL}	Progagation Delay Clock to Bus	1.5 1.5	5.5 5.5	2.0 2.0	7.5 7.5	2.5 2.5	10.0 10.0	ns
t _{PLH} t _{PHL}	Progagation Delay Bus to Bus	1.5 1.5	6.0 6.0	2.0 2.0	7.0 7.0	2.5 2.5	9.5 9.5	ns
t _{PLH} t _{PHL}	Progagation Delay SBA or SAB to A _n or B _n	1.5 1.5	6.0 6.0	2.0 2.0	7.5 7.5	2.5 2.5	10.0 10.0	ns
t _{PZH} t _{PZL}	Output Enable Time \overline{OE}_n or DIR to A_n or B_n	1.5 1.5	6.0 6.0	2.0 2.0	8.0 8.0	2.5 2.5	10.5 10.5	ns
t _{PHZ} t _{PLZ}	Output Disable Time \overline{OE}_n or DIR to A_n or B_n	1.5 1.5	6.0 6.0	(No	ote 7)	(No	te 7)	ns

Note 4: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all low-to-high, high-to-low, etc.).

Note 5: This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.

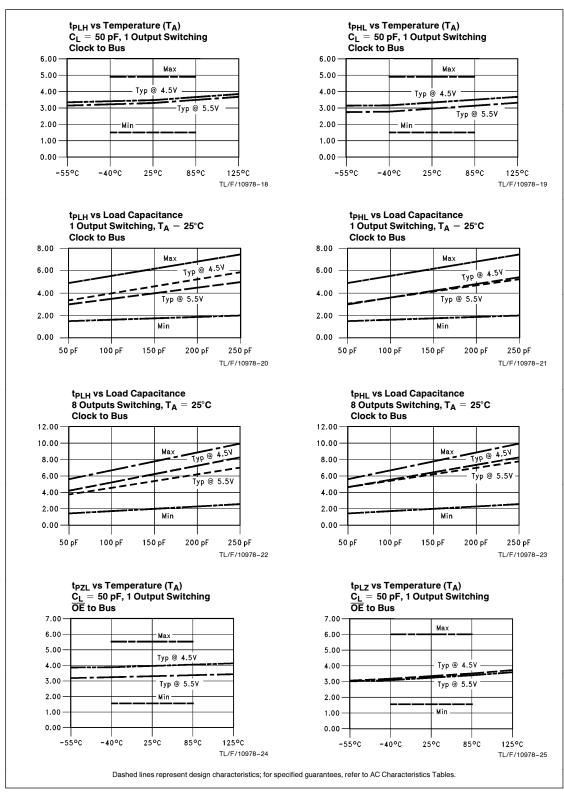
Note 6: This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase (i.e., all low-to-high, high-to-low, etc.) with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.

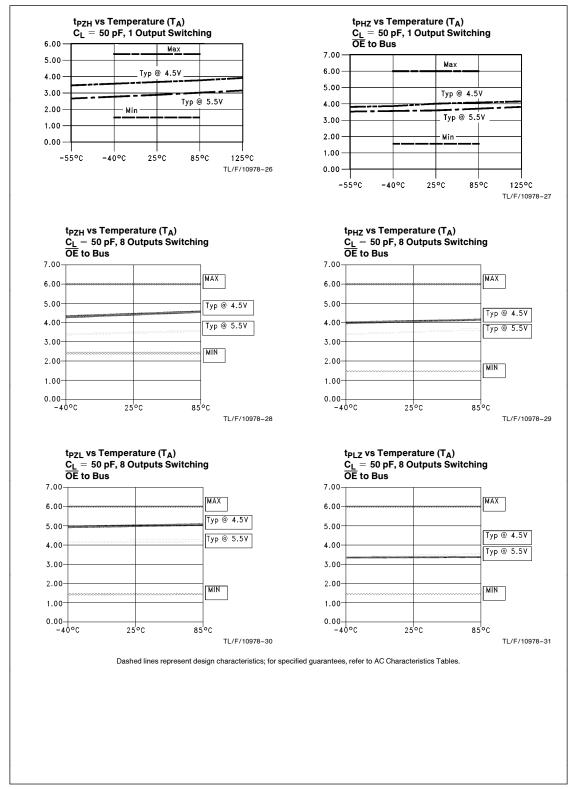
Note 7: The TRI-STATE delays are dominated by the RC network (500Ω, 250 pF) on the output and has been excluded from the datasheet.

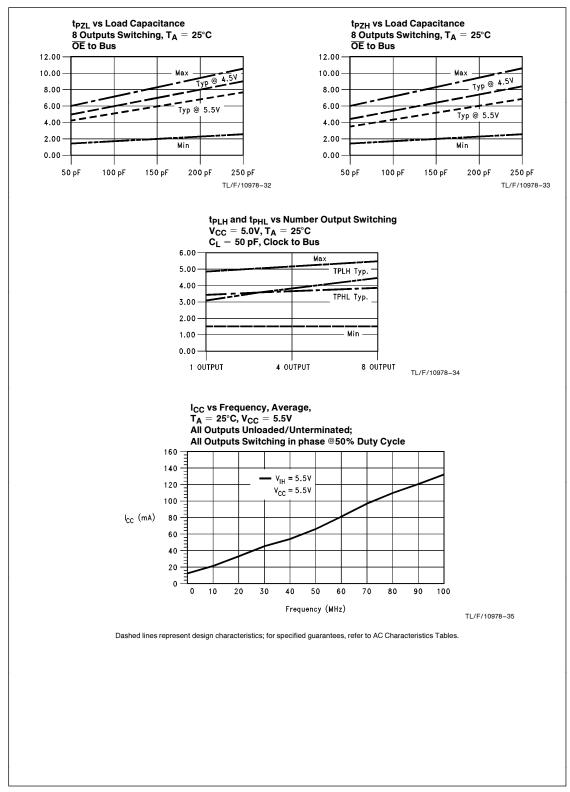
Symbol	Parameter	$74ABT$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V - 5.5V$ $C_L = 50 \text{ pF}$ 8 Outputs Switching (Note 3)	$74ABT$ $T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V-5.5V$ $C_{L} = 250 \text{ pF}$ 8 Outputs Switching (Note 4)	Units	
		Мах	Max		
t _{OSHL} (Note 1)	Pin to Pin Skew HL Transitions	1.3	2.5	ns	
t _{OSLH} (Note 1)	Pin to Pin Skew LH Transitions	1.0	2.0	ns	
t _{PS} (Note 5)	Duty Cycle LH-HL Skew	2.0	4.0		
t _{OST} (Note 1)	Pin to Pin Skew LH/HL Transitions	2.0	4.0	ns	
t _{PV} (Note 2)	Device to Device Skew LH/HL Transitions	2.5	4.5	ns	

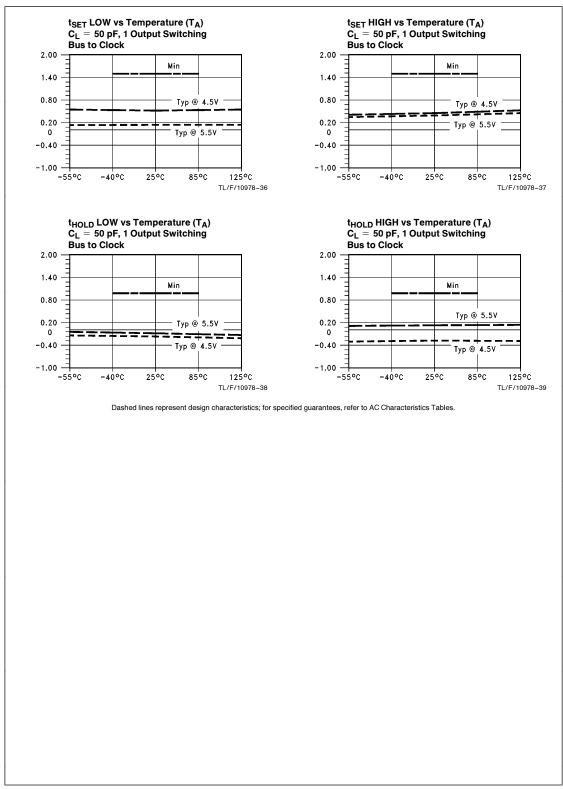
Note 1: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH to LOW (t_{OSHL}), LOW to HIGH (t_{OSLH}), or any combination switching LOW to HIGH and/or HIGH to LOW (t_{OST}). This specification is guaranteed but not tested.

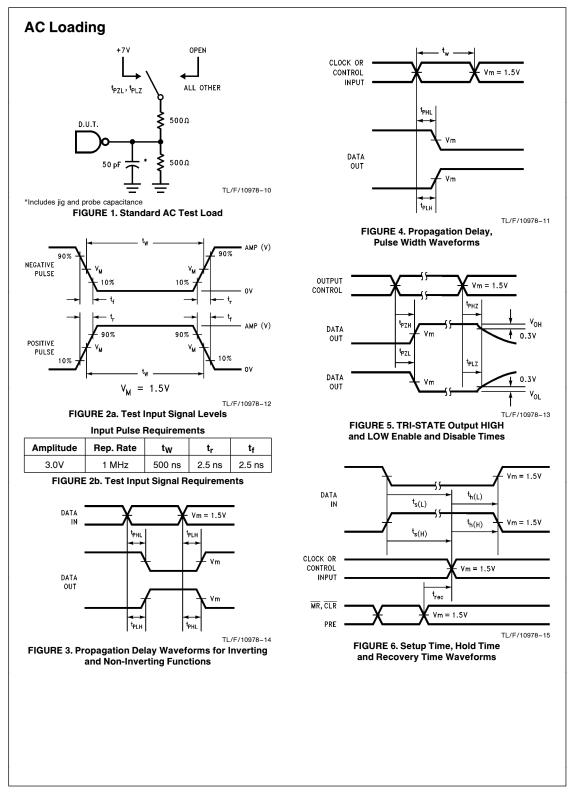
Note 2: Propagation delay variation for a given set of conditions (i.e., temperature and V_{CC}) from device to device. This specification is guaranteed but not tested. Note 3: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

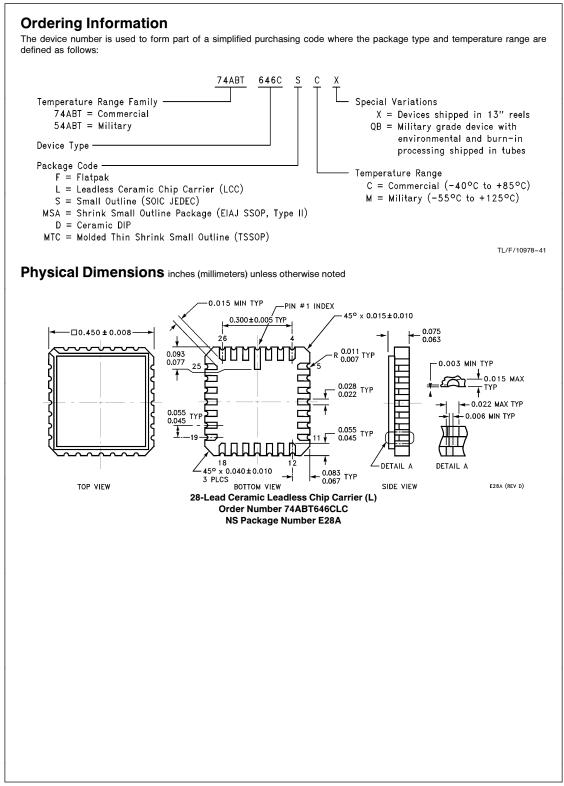

Note 4: This specification is guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.

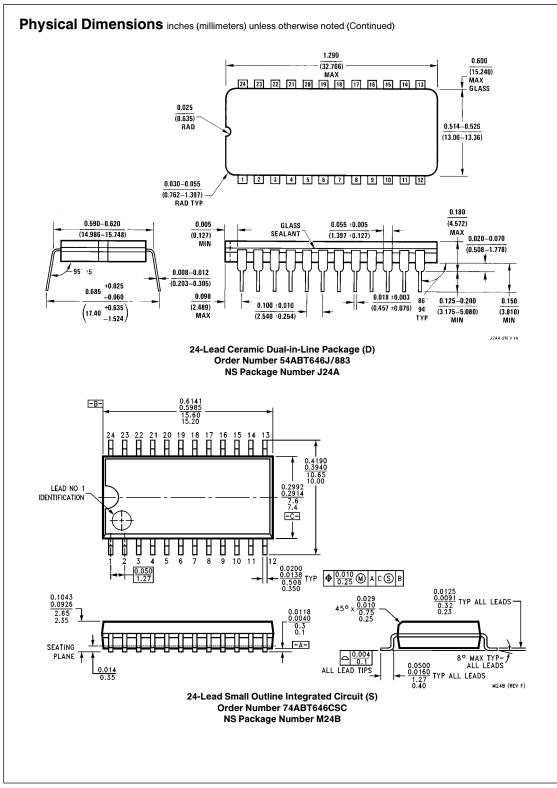

Note 5: This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across all the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested.

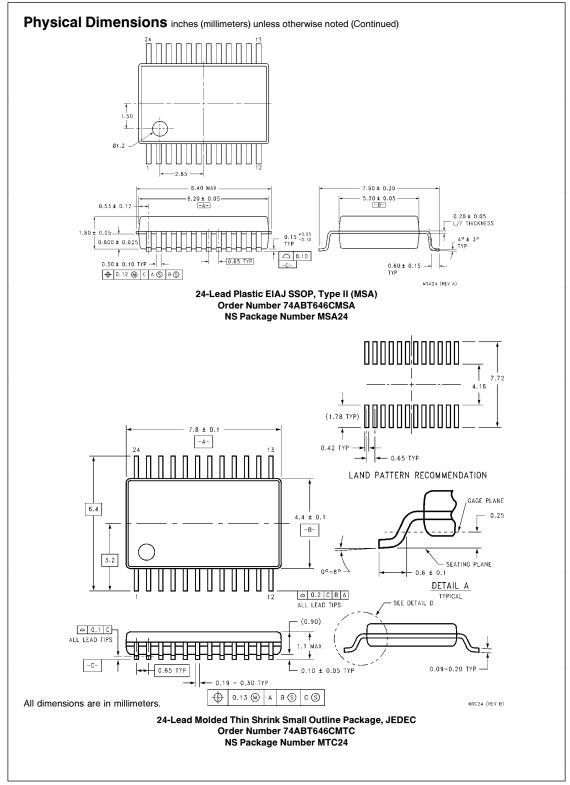

Capacitance

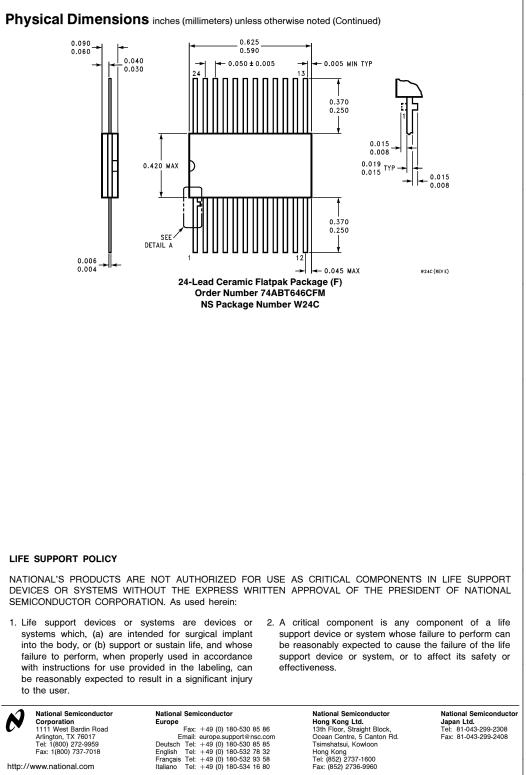

Symbol	Parameter		Units	Conditions T _A = 25°C
C _{IN}	Input Capacitance	5	pF	$V_{CC} = 0V$ (non I/O pins)
C _{I/O} (Note 1)	Output Capacitance	11	pF	$V_{CC} = 5.0 V (A_n, B_n)$


Note 1: $C_{I/O}$ is measured at frequency, f $\,=\,$ 1 MHz, per MIL-STD-883B, Method 3012.









National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications