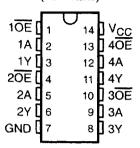
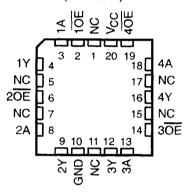
SN54LV125A, SN74LV125A QUADRUPLE BUS BUFFER GATES WITH 3-STATE OUTPUTS

SCES124C - DECEMBER 1997 - REVISED MAY 1998

- EPIC™ (Enhanced-Performance Implanted CMOS) Process
- Typical V_{OLP} (Output Ground Bounce)
 < 0.8 V at V_{CC}, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 2 V at V_{CC}, T_A = 25°C
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds 2000 V per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Package Options Include Plastic Small-Outline (D, NS), Shrink Small-Outline (DB), Thin Very Small-Outline (DGV), and Thin Shrink Small-Outline (PW) Packages, Ceramic Flat (W) Packages, Chip Carriers (FK), and 300-mil DIPs (J)


description

The 'LV125A quadruple bus buffer gates are designed for 2-V to 5.5-V V_{CC} operation.


These devices feature independent line drivers with 3-state outputs. Each output is disabled when the associated output-enable (OE) input is high.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

SN54LV125A . . . J OR W PACKAGE SN74LV125A . . . D, DB, DGV, NS, OR PW PACKAGE (TOP VIEW)

SN54LV125A . . . FK PACKAGE (TOP VIEW)

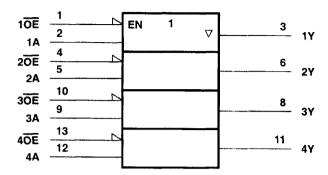
NC - No internal connection

The SN54LV125A is characterized for operation over the full military temperature range of -55° C to 125°C. The SN74LV125A is characterized for operation from -40° C to 85°C.

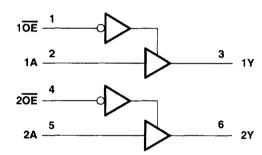
FUNCTION TABLE (each buffer)

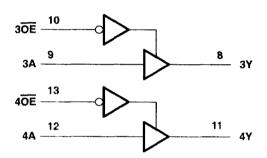
	INP	ЛS	ОИТРИТ
	ŌĒ	Α	Y
I	L	Н	Н
۱	L	L	L
ł	Н	X	z

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


EPIC is a trademark of Texas Instruments Incorporated.

SN54LV125A, SN74LV125A QUADRUPLE BUS BUFFER GATES WITH 3-STATE OUTPUTS


SCES124C - DECEMBER 1997 - REVISED MAY 1998


logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, DB, DGV, J, NS, PW, and W packages.

logic diagram (positive logic)

Pin numbers shown are for the D, DB, DGV, J, NS, PW, and W packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage range, V _{CC}		0.5 V to 7 V
input voltage range, V _I (see Note 1)		0.5 V to 7 V
Output voltage range, VO (see Notes 1 and 2)		. -0.5 V to $V_{CC} + 0.5$ V
Input clamp current, I_{IK} ($V_I < 0$)		
Output clamp current, IOK (VO < 0 or VO > VO		
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$		
Continuous current through V _{CC} or GND		±70 mA
Package thermal impedance, θ_{JA} (see Note 3)	: D package	127°C/W
	DB package	158°C/W
	DGV package	182°C/W
	NS package	127°C/W
	PW package	170°C/W
Operating free-air temperature range, TA		40°C to 85°C
Storage temperature range, T _{stg}	• • • • • • • • • • • • • • • • • • • •	65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. This value is limited to 7 V maximum.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			SN54L	/125A	SN74L	V125A	4.13.11~
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		2	5.5	2	5.5	V
		V _{CC} = 2 V	1.5		1.5		
V	High lavel ignut valtage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	V _{CC} ×0.7		V _{CC} ×0.7		,,,
VIH	High-level input voltage	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	V _{CC} ×0.7		V _{CC} ×0.7		٧
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	V _{CC} ×0.7		V _{CC} ×0.7		
		V _{CC} = 2 V		0.5		0.5	
٧.,	A record to and the control of the c	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		V _{CC} ×0.3		V _{CC} ×0.3	,,,
VIL	Low-level input voltage	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		V _{CC} ×0.3		V _{CC} ×0.3	٧
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		V _{CCx} 0.3		V _{CC} ×0.3	-
۷Į	Input voltage		0	5.5	0	5.5	٧
17 -	Output voltage	High or low state	0	^{⊱v} cc	0	VCC	
۷o		3-state	0 🐧	5.5	0	5.5	٧
		V _{CC} = 2 V		-50		-50	μА
1	High level autout average	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	7	2		-2	
ЮН	High-level output current	V _{CC} = 3 V to 3.6 V	47.5	-8		-8	mA
		V _{CC} = 4.5 V to 5.5 V		-16		-16	
		V _{CC} = 2 V		50		50	μΑ
1_	t and target and an extension	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		2		2	
OL	Low-level output current	V _{CC} = 3 V to 3.6 V		8		8	mA
		V _{CC} = 4.5 V to 5.5 V		16		16	
		V _{CC} = 2.3 V to 2.7 V	0	200	0	200	
Δτ/Δν	Input transition rise or fall rate	V _{CC} = 3 V to 3.6 V	0	100	0	100	ns/V
		V _{CC} = 4.5 V to 5.5 V	0	20	0	20	
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 4: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETER	TEST CONDITIONS		SN54	LV125A	SN74	11111		
PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP MAX	MIN	TYP MAX	UNIT	
····	IOH = -50 μA	2 V to 5.5 V	VCC-0.1		VCC-0.1			
V	1 _{OH} = -2 mA	2.3 V	2		2] ,	
VOH	IOH = −8 mA	3 V	2.48	7.	2.48		7 °	
	IOH = -16 mA	4.5 V	3.8	40°	3.8			
	I _{OL} = 50 μA	2 V to 5.5 V		્રેફે 0.1		0.1		
W	IOL = 2 mA	2.3 V		0.4		0.4	0.4 V	
VOL	I _{OL} = 8 mA	3 V	*	0.44		0.44	.]	
	IOL = 16 mA	4.5 V	A ST	0.55		0.55		
Ŋ	VI = VCC or GND	5.5 V		±1		±1	μΑ	
loz	VO = VCC or GND	5.5 V		±5		±£	μΑ	
lcc	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V		20		20	μΑ	
loff	V _I or V _O = 0 to 5.5 V	0 V		5			μΑ	
Ci	VI = VCC or GND	3.3 V		2		2	ρF	

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas instruments reserves the right to change or discontinue these products without notice.

SN54LV125A, SN74LV125A QUADRUPLE BUS BUFFER GATES WITH 3-STATE OUTPUTS

SCES124C - DECEMBER 1997 - REVISED MAY 1998

switching characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	LOAD	T,	Δ = 25°C	;	SN54L	V125A	SN74L	V125A	1.44.40	
PANAMETER	(INPUT) (OUTPUT	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT	
^t pd*	Α	Υ	C _L = 15 pF			6.8	13	1	15,5	1	15.5	
t _{en} *	ŌĒ	Y			7	13	1	J 5.5	1	15.5	ns	
^t dis [*]	ŌĒ	Y			5.1	14.7	1, 8	17	1	17		
t _{pd}	Α	Y	C _L = 50 pF			8.7	16.5	.1.	18.5	1	18.5	
^t en	ŌE	Y			8.8	16.5	্ব 1	18.5	1	18.5	ns	
^t dis	ŌĒ	Y			7.3	18.2	₹ 1	20.5	1	20.5		

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	FROM TO		T _A = 25°C		SN54LV125A		SN74LV125A		1400		
PANAMETER	(INPUT) (OU	(OUTPUT)	(OUTPUT) CAPACITANCE		TYP	MAX	MIN	MAX	MIN	MAX	UNIT	
^t pd*	Α	Y	C _L = 15 pF			4.8	8	1	9.5	1	9.5	
ten*	ŌĒ	Y			4.8	8	1	्र 9.5	1	9.5	ns	
^t dis [*]	ŌĒ	Y			4.1	9.7	1 4	11.5	1	11.5		
^t pd	Α	Y			6.1	11.5	4	13	1	13		
t _{en}	ŌĒ	Υ	C _L = 50 pF	-	6.2	11.5	্ব 1	13	1	13	ns	
^t dis	ŌĒ	Y			5.5	13.2	1	15	1	15		

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM TO		LOAD	T _A = 25°C		SN54LV125A		SN74LV125A			
PARAMETER	(INPUT) (OUTPUT) C	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT	
^t pa*	Α	Y	C _L = 15 pF		3.4	5.5	1	6,5	1	6.5	
t _{en} *	ŌĒ	Y			3.4	5.1	1	6	1	6	ns
^t dis*	ŌĒ	Y			3.2	6.8	1 (" 8	1	8	
t _{pd}	A	Υ			4.3	7.5	1	8.5	1	8.5	
t _{en}	ŌĒ	Y	C _L = 50 pF		4.4	7.1	्री	8	1	8	ns
^t dis	ŌĒ	Y			4	8.8	্ৰ 1	10	1	10	

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

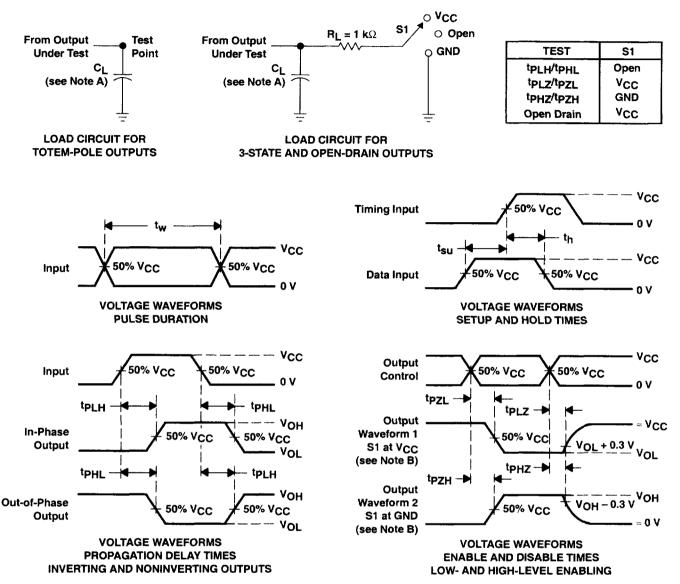
output-skew characteristics, C_L = 50 pF (see Note 5)

	PARAMETER	Vcc	T _A = 25°C			MIN		UNIT
			MIN	TYP	MAX	MIIIA	MAX	
		2.3 V to 2.7 V		0.3	2		2	
t _{sk(o)}	Output skew	3 V to 3.6 V		0.3	1.5		1.5	ns
` ´		4.5 V to 5.5 V		0.3	1		1	

NOTE 5: Skew between any two outputs of the same package switching in the same direction

SN54LV125A, SN74LV125A QUADRUPLE BUS BUFFER GATES WITH 3-STATE OUTPUTS SCES124C - DECEMBER 1997 - REVISED MAY 1998

noise characteristics, V_{CC} = 3.3 V, C_L = 50 pF, T_A = 25°C (see Note 6)


	PARAMETER	SN74LV125A	UNIT
	PARAMETER	MIN TYP MAX	CIALL
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}	0.36 0.8	V
VOL(V)	Quiet output, minimum dynamic VOL	-0.27 -0.8	٧
VOH(V)	Quiet output, minimum dynamic VOH	3.04	V
V _{IH(D)}	High-level dynamic input voltage	2.31	V
V _{IL(D)}	Low-level dynamic input voltage	0.99	V

NOTE 6: Characteristics are for surface-mount packages only.

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER			TEST CONDITIONS			UNIT
	Dower dispination conscitutes	Outputs anabled	C 50 pE	f = 10 MHz	3.3 V	15.5	ρF
Cpd	Power dissipation capacitance	Outputs enabled	CL = 50 pF,	I = IU MINZ	5 V	17.6	рг

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \ \Omega$, $t_f \leq$ 3 ns. $t_f \leq$ 3 ns.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. tpLz and tpHz are the same as tdis-
- F. tpzL and tpzH are the same as ten.
- G. tpHL and tpLH are the same as tod.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated