CA158, CA258 CA358, CA2904, LM358*, LM2904* ## Dual Operational Amplifiers for Commercial Industrial, and Military Applications March 1993 #### Features - Internal Frequency Compensation for Unity Gain - High DC Voltage Gain 100dB (Typ.) - Wide Bandwidth at Unity Gain 1MHz(Typ.) - Wide Power Supply Range: - Single Supply 3 to 30V - Low Supply Current......1.5 mA (Typ.) - Low Input Bias Current - Low Input Offset Voltage and Current - Input Common-Mode Voltage Range Includes Ground - Differential Input Voltage Range Equal to V+ Range - Large Output Voltage Swing 0 to V+ -1.5V #### Description The CA158, CA158A, CA258, CA258A, CA358, CA358A and CA2904 types consist of two independent, high gain, internally frequency compensated operational amplifiers which are designed specifically to operate from a single power supply over a wide range of voltages. They may also be operated from split power supplies. The supply current is basically independent of the supply voltage over the recommended voltage range. These devices are particularly useful in interface circuits with digital systems and can be operated from the single common 5V_{DC} power supply. They are also intended for transducer amplifiers, DC gain blocks and many other conventional op amp circuits which can benefit from the single power supply capability. The CA158, CA158A, CA258, CA258A, CA358, CA358A, and CA2904 types are an equivalent to or a replacement for the industry types 158, 158A, 258, 258A, 358, 358A, and CA2904. #### Ordering Information | PART
NUMBER | SUFFIX
LETTERS | PACKAGE | |--------------------------------|-------------------|--| | CA158, A | E | 8 Lead Plastic DIP | | CA258, A
CA358, A
CA2904 | М | 8 Lead SOIC | | CA158, A
CA258, A | Т | 8 Pin TO-5 Can with
Standard Leads | | CA358, A | s | 8 Pin TO-5 Can with
Dual-In-Line Formed Leads | #### **Pinouts** CA158, CA258, and CA358 (TO-5 CAN) TOP VIEW ## CA158, CA258, CA358, AND CA2904 (PDIP, SOIC) TOP VIEW #### Absolute Maximum Ratings Operating Conditions Operating Temperature Range -55°C to +125°C Storage Temperature Range -65°C to +150°C CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. | | | | C | | | | |--|-------------------|--|-----|------|---------|----------------| | PARAMETERS | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNITS | | T _A = +25°C | | | | | | | | Input Offset Voltage | V _ю | (Note 3) | - | 1 | 2 | m۷ | | Output Voltage Swing | V _{OPP} | $R_L = 2k\Omega$ | 0 | - | V+ -1.5 | ٧ | | Input Common Mode Voltage Range | V _{ICR} | (Note 2), V+ = 30V | 0 | • | V+ -1.5 | V | | Input Offset Current | I _{IO} | l ₁ + - l ₁ - | - | 2 | 10 | n A | | Input Bias Current | I _{IB} | I _I + or I _I -, (Note 1) | • | 20 | 50 | nA | | Output Current (Source) | lo | V _i + = +1V, V _i - = 0V, V+ = 15V | 20 | 40 | | mA | | Output Current (Sink) | l _O | V _i + = 0V, V _i - = 1V, V+ = 15V | 10 | 20 | - | mA | | | | V _i + = 0V, V _i - = 1V, V _O = 200mV | 12 | 50 | - | μА | | Short Circuit Output Current | | R _L = 0Ω (to Ground) (Note 4) | - | 40 | 60 | mA | | Large Signal Voltage Gain | A _{OL} | $R_L \ge 2k\Omega$, V+ = 15V (For large V _O swing) | 50 | 100 | | V/rnV | | Common Mode Rejection Ratio | CMRR | DC | 70 | 85 | - | dB | | Power Supply Rejection Ratio | PSRR | DC | 65 | 100 | | dΒ | | Amplifier-to-Amplifier Coupling | | f = 1 to 20kHz (Input referred) | - | -120 | - | dΒ | | T _A = -55°C to +125°C | • | | | | | | | Input Offset Voltage | V _ю | (Note 3) | - | - | 4 | mV | | Temperature Coefficient of Input
Offset Voltage | ∝V _{IO} | $R_S = 0\Omega$ | - | 7 | 15 | μ V/° C | | Input Offset Current | I _{IO} | | - | - | 30 | nA | | Temperature Coefficient of Input Offset Current | ∞l _i o | | - | 10 | 200 | pA∕°C | | Input Bias Current | I _{IB} | l ₁ + or l ₁ - | - | 40 | 100 | nA | | Input Common Mode Voltage Range | V _{ICR} | V+ = 30V (Note 2) | 0 | | V+ -2 | V | #### Specifications CA158, CA158A, CA258, CA258A, CA358, CA358A, CA2904, LM358, LM2904 Electrical Specifications Values Apply for Each Operational Amplifier, Supply Voltage (V+) = 5V, Unless Otherwise Specified (Continued) | | | | C/ | 158A LIM | TS | | |----------------|--------|--------------------------------------|-----|----------|-----|-------| | PARAMETERS | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNITS | | Supply Current | l+ | R _L = ∞ On all amplifiers | - | 0.7 | 1.2 | mA | | | | R _L = ∞, V+ = 30V | _ | 1.5 | 3 | mA | #### NOTES: - 1. Due to the p-n-p input stage the direction of the input current is out of the IC. No loading change exists on the input lines because this current is essentially constant, independent of the state of the output. - The input signal voltages and the input common mode voltage should not be allowed to go negative by more than 0.3V. The positive limit of the common mode voltage range is V+ 1.5V, but either or both inputs can go to +32V without damage. - 3. $V_0 = 1.4 V_{DC}$, $R_S = 0 \Omega$ with V+ from 5V to 30V; and over the full input common mode voltage range (0V to V+ 1.5V). - 4. The maximum output current is approximately 40mA independent of the magnitude of V+. Continuous short circuits at V+ > 15V can cause excessive power dissipation and eventual destruction. Short circuits from the output to V+ can cause overheating and eventual destruction of the device. Destructive dissipation can result from simultaneous short circuits on both amplifiers. - 5. This input current will only exist when the voltage at any of the input leads is driven negative. This current is due to the collector base junction of the input p-n-p transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral n-p-n parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the amplifiers to go to the V+ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This transistor action is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3VDC. - 6. The maximum output current is approximately 40mA independent of the magnitude of V+. Continuous short circuits at V+ > 15V can cause excessive power dissipation and eventual destruction. Short circuits from the output to V+ can cause overheating and eventual destruction of the device. Destructive dissipation can result from simultaneous short circuits on both amplifiers. | | | | C | A258A LIM | ITS | | |--|------------------|---|-----|-----------|---------|-------| | PARAMETERS | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNITS | | T _A = +25°C | | <u> </u> | | | | | | Input Offset Voltage | Vκ | (Note 3) | | 1 | 3 | mV | | Output Voltage Swing | V _{OPP} | $R_L = 2k\Omega$ | 0 | - | V+ -1.5 | ٧ | | Input Common Mode Voltage Range | V _{ICR} | (Note 2), V+ = 30V | 0 | - | V+ -1.5 | ٧ | | Input Offset Current | lio | l ₁ + - l ₁ - | - | 2 | 15 | nA | | Input Bias Current | I _{IB} | l _i + or l _i -, (Note 1) | - | 40 | 80 | nA | | Output Current (Source) | lo | $V_1 + = +1V$, $V_1 - = 0V$, $V + = 15V$ | 20 | 40 | - | mA | | Output Current (Sink) | lo | V _I + = 0V, V _I - = 1V, V+ = 15V | 10 | 20 | 1 - | mA | | | | $V_1 + = 0V$, $V_1 - = 1V$, $V_0 = 200 \text{mV}$ | 12 | 50 | · · | μА | | Short Circuit Output Current | | $R_L = 0\Omega$ (to Ground) (Note 4) | - | 40 | 60 | mA | | Large Signal Voltage Gain | A _{OL} | R _L ≥ 2kΩ, V+ = 15V (For large V _O swing) | 50 | 100 | - | V/mV | | Common Mode Rejection Ratio | CMRR | DC | 70 | 85 | | dB | | Power Supply Rejection Ratio | PSRR | DC | 65 | 100 | - | dΒ | | Amplifier-to-Amplifier Coupling | | f = 1 to 20kHz (Input referred) | - | -120 | | dB | | T _A = -25°C to +85°C | | <u> </u> | | | | | | Input Offset Voltage | V _{IO} | (Note 3) | - | - | 4 | mV | | Temperature Coefficient of Input Offset
Voltage | ∝V _{IO} | $H_S = 0\Omega$ | - | 7 | 15 | μV/°C | | Input Offset Current | l _i o | 1,+ - 1,- | | - | 30 | nA | ## Electrical Specifications Values Apply for Each Operational Amplifier, Supply Voltage (V+) = 5V, Unless Otherwise Specified (Continued) | | | | CA258A LIMITS | | | | |--|------------------|--------------------------------------|---------------|-----|-------|-------| | PARAMETERS | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNITS | | Temperature Coefficient of Input Offset
Current | ∞l _{lO} | | - | 10 | 200 | pA/°C | | Input Bias Current | l _{tB} | l _i + or l _i - | - | 40 | 100 | nA | | Input Common Mode Voltage Range | V _{ICR} | V+ = 30V (Note 2) | 0 | - | V+ -2 | V | | Supply Current | 1+ | R _L = ∞ On all amplifiers | - | 0.7 | 1.2 | mA | | | | R _L = ∞, V+ = 30V | - | 1.5 | 3 | mA | #### NOTES: - 1. Due to the p-n-p input stage the direction of the input current is out of the IC. No loading change exists on the input lines because this current is essentially constant, independent of the state of the output. - 2. The input signal voltages and the input common mode voltage should not be allowed to go negative by more than 0.3V. The positive limit of the common mode voltage range is V+ 1.5V, but either or both inputs can go to +32V without damage. - 3. $V_0 = 1.4V_{DC}$, $R_S = 0\Omega$ with V+ from 5V to 30V; and over the full input common mode voltage range (0V to V+ 1.5V). - 4. The maximum output current is approximately 40mA independent of the magnitude of V+. Continuous short circuits at V+ > 15V can cause excessive power dissipation and eventual destruction. Short circuits from the output to V+ can cause overheating and eventual destruction of the device. Destructive dissipation can result from simultaneous short circuits on both amplifiers. | | | | C | A358A LIM | ITS | | |--|------------------|--|-----|-----------|---------|-------| | PARAMETERS | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNITS | | $T_A = +25^{\circ}C$ | | | | | • | | | Input Offset Voltage | V _{IO} | (Note 3) | | 2 | 3 | mV | | Output Voltage Swing | V _{OPP} | $R_L = 2k\Omega$ | 0 | · · | V+ -1.5 | V | | Input Common Mode Voltage Range | V _{ICR} | (Note 2), V+ = 30V | 0 | ١. | V+ -1.5 | ٧ | | Input Offset Current | I _{IO} | l ₁ + - l ₁ - | | 5 | 30 | nA | | Input Bias Current | IIB | l _i + or l _i -, (Note 1) | - | 45 | 100 | nA | | Output Current (Source) | lo | V _I + = +1V, V _I - = 0V, V+ = 15V | 20 | 40 | | mA | | Output Current (Sink) | lo | $V_1 + = 0V, V_1 - = 1V, V + = 15V$ | 10 | 20 | - | mA | | | | V _I + = 0V, V _I - = 1V, V _O = 200mV | 12 | 50 | - | μА | | Short Circuit Output Current | | $R_L = 0\Omega$ (to Ground) (Note 4) | • | 40 | 60 | mA | | Large Signal Voltage Gain | A _{OL} | R _L ≥ 2kΩ, V+ = 15V (For large V _O swing) | 25 | 100 | - | V/mV | | Common Mode Rejection Ratio | CMRR | DC | 65 | 85 | - | dB | | Power Supply Rejection Ratio | PSRR | DC | 65 | 100 | - | dΒ | | Amplifier-to-Amplifier Coupling | | f = 1 to 20kHz (Input referred) | - | -120 | - | dB | | T _A = 0 to +70°C | | | | • | • | _ | | Input Offset Voltage | V _{IO} | (Note 3) | - | T - | 5 | mV | | Temperature Coefficient of Input Offset
Voltage | ∝V _Ю | $R_S = 0\Omega$ | • | 7 | 20 | μV/°C | | Input Offset Current | I _{IO} | | • | - | 75 | nA | | Temperature Coefficient of Input Offset Current | ∝l _Ю | | - | 10 | 300 | pA∕°C | #### Specifications CA158, CA158A, CA258, CA258A, CA358, CA358A, CA2904, LM358, LM2904 Electrical Specifications Values Apply for Each Operational Amplifier, Supply Voltage (V+) = 5V, Unless Otherwise Specified (Continued) | | | | C | | | | |---------------------------------|------------------|--------------------------------------|-----|-----|-------|-------| | PARAMETERS | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNITS | | Input Bias Current | I _{IB} | I _I + or I _I - | - | 40 | 200 | nA | | Input Common Mode Voltage Range | V _{ICR} | V+ = 30V (Note 2) | 0 | - | V+ -2 | V | | Supply Current | l+ | R _L = ∞ On all amplifiers | - | 0.7 | 1.2 | mA | | | | R _L = ∞, V+ = 30V | - | 1.5 | 3 | mA | #### NOTES: - 1. Due to the p-n-p input stage the direction of the input current is out of the IC. No loading change exists on the input lines because this current is essentially constant, independent of the state of the output. - 2. The Input signal voltages and the input common mode voltage should not be allowed to go negative by more than 0.3V. The positive limit of the common mode voltage range is V+ 1.5V, but either or both inputs can go to +32V without damage. - 3. $V_0 = 1.4V_{DC}$, $R_S = 0\Omega$ with V+ from 5V to 30V; and over the full input common mode voltage range (0V to V+ 1.5V). - 4. The maximum output current is approximately 40mA independent of the magnitude of V+. Continuous short circuits at V+ > 15V can cause excessive power dissipation and eventual destruction. Short circuits from the output to V+ can cause overheating and eventual destruction of the device. Destructive dissipation can result from simultaneous short circuits on both amplifiers. | | | | LIMITS
CA158, CA258 | | | | |--|------------------|--|------------------------|------|---------|-------| | PARAMETERS | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNITS | | T _A = +25°C | - | | | • | • | | | Input Offset Voltage | V _ю | (Note 3) | | 2 | 5 | mV | | Output Voltage Swing | V _{OPP} | $R_L = 2k\Omega$ | 0 | - | V+ -1.5 | V | | Input Common Mode Voltage Range | V _{ICR} | (Note 2), V+ = 30V | 0 | | V+ -1.5 | V | | Input Offset Current | I _{IO} | lı+ - lı- | | 3 | 30 | nA | | Input Bias Current | I _{IB} | i _l + or I _l -, (Note 1) | - | 45 | 150 | nA | | Output Current (Source) | lo | V _i + = +1V, V _i - = 0V, V+ = 15V | 20 | 40 | - | mA | | Output Current (Sink) | lo | V ₁ + = 0V, V ₁ - = 1V, V+ = 15V | 10 | 20 | - | mA | | | | V _i + = 0V, V _i - = 1V, V _O = 200mV | 12 | 50 | - | μА | | Short Circuit Output Current | | $R_L = 0\Omega$ (to Ground) (Note 4) | - | 40 | 60 | mA | | Large Signal Voltage Gain | A _{OL} | R _L ≥ 2kΩ, V+ = 15V (For large V _O swing) | 50 | 100 | - | V/mV | | Common Mode Rejection Ratio | CMRR | DC | 70 | 85 | | dB | | Power Supply Rejection Ratio | PSRR | DC | 65 | 100 | - | dB | | Amplifier-to-Amplifier Coupling | | f = 1 to 20kHz (Input referred) | - | -120 | - | dB | | $T_A = -55^{\circ}C \text{ to } +125^{\circ}C \text{ (CA158); } T_A = -25$ | °C to +85°C (| CA258) | | • | • | | | Input Offset Voltage | V _{IO} | (Note 3) | - | - | 7 | mV | | Temperature Coefficient of Input Offset
Voltage | ∝V _{IO} | $R_S = 0\Omega$ | • | 7 | - | μV/ºC | | Input Offset Current | I _{IO} | l ₁ + - l ₁ - | | - | 100 | nA | | Temperature Coefficient of Input Offset Current | ∞l ₁₀ | | - | 10 | - | pA/ºC | #### 6 # OPERATIONAL Electrical Specifications Values Apply for Each Operational Amplifier, Supply Voltage (V+) = 5V, Unless Otherwise Specified (Continued) | | | | C. | LIMITS
A158, CA2 | 58 | | |---------------------------------|------------------|--------------------------------------|-----|---------------------|-------|-------| | PARAMETERS | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNITS | | Input Bias Current | l _{iB} | l _i + or l _i - | - | 40 | 300 | nA | | Input Common Mode Voltage Range | V _{ICR} | V+ = 30V (Note 2) | 0 | - | V+ -2 | v | | Supply Current | l+ | R _L = ∞ On all amplifiers | - | 0.7 | 1.2 | mA | | | | R _L = ∞, V+ = 30V | - | 1.5 | 3 | mA | #### NOTES: - 1. Due to the p-n-p input stage the direction of the input current is out of the IC. No loading change exists on the input lines because this current is essentially constant, independent of the state of the output. - The input signal voltages and the input common mode voltage should not be allowed to go negative by more than 0.3V. The positive limit of the common mode voltage range is V+ 1.5V, but either or both inputs can go to +32V without damage. - 3. $V_{\Omega} = 1.4V_{DC}$, $R_{S} = 0\Omega$ with V+ from 5V to 30V; and over the full input common mode voltage range (0V to V+ 1.5V). - 4. The maximum output current is approximately 40mA independent of the magnitude of V+. Continuous short circuits at V+ > 15V can cause excessive power dissipation and eventual destruction. Short circuits from the output to V+ can cause overheating and eventual destruction of the device. Destructive dissipation can result from simultaneous short circuits on both amplifiers. | | | | С | A358 LIMI | TS | UNITS | |---|------------------|--|-----|-----------|---------|----------------| | PARAMETERS | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | | | T _A = +25°C | | | | | | | | Input Offset Voltage | V _{IO} | (Note 3) | - | 2 | 7 | mV | | Output Voltage Swing | V _{OPP} | $H_L = 2k\Omega$ | 0 | - | V+ -1.5 | ٧ | | Input Common Mode Voltage Range | V _{ICR} | (Note 2), V+ = 30V | 0 | - | V+ -1.5 | V | | Input Offset Current | I _{IO} | I ₁ + - I ₁ - | - | 5 | 50 | nA | | Input Bias Current | I _{IB} | I _i + or I _i -, (Note 1) | - | 45 | 250 | nA | | Output Current (Source) | lo | V _I + = +1V, V _I - = 0V, V+ = 15V | 20 | 40 | - | mA | | Output Current (Sink) | lo | V _I + = 0V, V _I - = 1V, V+ = 15V | 10 | 20 | - | mA | | | | V _i + = 0V, V _i - = 1V, V _Q = 200mV | 12 | 50 | - | μА | | Short Circuit Output Current | | R _L = 0Ω (to Ground) (Note 4) | - | 40 | 60 | mA | | Large Signal Voltage Gain | Aol | $R_L \ge 2k\Omega$, V+ = 15V (For large V _O swing) | 25 | 100 | - | V/mV | | Common Mode Rejection Ratio | CMRR | DC | 65 | 70 | - | dB | | Power Supply Rejection Ratio | PSRR | DC | 65 | 100 | | dΒ | | Amplifier-to-Amplifier Coupling | | f = 1 to 20kHz (Input referred) | - | -120 | - | dB | | $T_A = 0 \text{ to } +70^{\circ}\text{C}$ | | | | | | | | Input Offset Voltage | ν _ю | (Note 3) | - | - | 9 | mV | | Temperature Coefficient of Input Offset Voltage | ∝V _Ю | $R_S = 0\Omega$ | • | 7 | - | μV/°C | | Input Offset Current | l _{iO} | l ₁ + - 1 ₁ - | - | - | 150 | nA | | Temperature Coefficient of Input Offset Current | ∝l _{IO} | | - | 10 | - | p A∕° C | #### Specifications CA158, CA158A, CA258, CA258A, CA358A, CA2904, LM358, LM2904 Electrical Specifications Values Apply for Each Operational Amplifier, Supply Voltage (V+) = 5V, Unless Otherwise Specified (Continued) | | | C | CA358 LIMITS | | | | |---------------------------------|------------------|--------------------------------------|--------------|-----|-------|-------| | PARAMETERS | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNITS | | Input Bias Current | l _{iB} | I _i + or I _i - | - | 40 | 500 | nA | | Input Common Mode Voltage Range | V _{ICR} | V+ = 30V (Note 2) | 0 | - | V+ -2 | ٧ | | Supply Current | 1+ | R _L = ∞ On all amplifiers | · | 0.7 | 1.2 | mA | | | | R _L = ∞, V+ = 30V | - | 1.5 | 3 | mA | #### NOTES: - 1. Due to the p-n-p input stage the direction of the input current is out of the IC. No loading change exists on the input lines because this current is essentially constant, independent of the state of the output. - 2. The input signal voltages and the input common mode voltage should not be allowed to go negative by more than 0.3V. The positive limit of the common mode voltage range is V+ 1.5V, but either or both inputs can go to +32V without damage. - 3. $V_O = 1.4 V_{DC}$, $R_S = 0 \Omega$ with V+ from 5V to 30V; and over the full input common mode voltage range (0V to V+ 1.5V). - 4. The maximum output current is approximately 40mA independent of the magnitude of V+. Continuous short circuits at V+ > 15V can cause excessive power dissipation and eventual destruction. Short circuits from the output to V+ can cause overheating and eventual destruction of the device. Destructive dissipation can result from simultaneous short circuits on both amplifiers. | · | | | C. | A2904 LIM | πs | | |---|------------------|---|-----|-----------|---------|-------| | PARAMETERS | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNITS | | T _A = +25°C | | | | | | | | Input Offset Voltage | V _{IO} | (Note 3) | - | 2 | 7 | mV | | Output Voltage Swing | V _{OPP} | $R_L = 10k\Omega$ | 0 | - | V+ -1.5 | ٧ | | Input Common Mode Voltage Range | V _{ICR} | (Note 2), V+ = 30V | 0_ | - | V+ -1.5 | ٧ | | Input Offset Current | l _{IO} | \$ ₁ + − 1 ₁ - | - | 5 | 50 | nΑ | | Input Bias Current | l _{i8} | I _i + or I _i -, (Note 1) | - | 45 | 250 | nA | | Output Current (Source) | lo | V ₁ + = +1V, V ₁ - = 0V, V+ = 15V | 20 | 40 | | mA | | Output Current (Sink) | lo | V _i + = 0V, V _i - = 1V, V+ = 15V | 10 | 20 | T - | mA | | Short Circuit Output Current | | R _L = 0Ω (to Ground) (Note 4) | - | 40 | 60 | mA | | Large Signal Voltage Gain | A _{OL} | R _L ≥ 2kΩ, V+ = 15V (For large V _O swing) | - | 100 | - | V/mV | | Common Mode Rejection Ratio | CMRR | DC | 50 | 70 | | dB | | Power Supply Rejection Ratio | PSRR | DC | 50 | 100 | - | dΒ | | Amplifier-to-Amplifier Coupling | | f = 1 to 20kHz (Input referred) | - | -120 | - | dB | | T _A = -40°C to +85°C | - | | - | | | | | Input Offset Voltage | V _{IO} | (Note 3) | - | - | 10 | mV | | Temperature Coefficient of Input Offset Voltage | ∝V _{IO} | $R_S = 0\Omega$ | - | 7 | - | μV/°C | | Input Offset Current | l _{io} | 1,+ - 1,- | - | 45 | 200 | nA | | Temperature Coefficient of Input Offset Current | ∝l _Ю | | - | 10 | - | pA∕°C | | Input Bias Current | I _{IB} | I _I + or I _I - | - | 40 | 500 | nA | ## Electrical Specifications Values Apply for Each Operational Amplifier, Supply Voltage (V+) = 5V, Unless Otherwise Specified (Continued) | | | | CA2904 LIMITS | | | | |---------------------------------|------------------|--------------------------------------|---------------|-----|-------|-------| | PARAMETERS | SYMBOL | TEST CONDITIONS | MIN | ТҮР | MAX | UNITS | | Input Common Mode Voltage Range | V _{ICR} | V+ = 30V (Note 2) | 0 | - | V+ -2 | ٧ | | Supply Current | I+ | R _L = ∞ On all amplifiers | - | 0.7 | 1.2 | mA | | | | R _L = ∞, V+ = 30V | | 1.5 | 3 | mA | #### NOTES: - 1. Due to the p-n-p input stage the direction of the input current is out of the IC. No loading change exists on the input lines because this current is essentially constant, independent of the state of the output. - 2. The input signal voltages and the input common mode voltage should not be allowed to go negative by more than 0.3V. The positive limit of the common mode voltage range is V+ 1.5V, but either or both inputs can go to +32V without damage. - 3. $V_0 = 1.4 V_{DC}$, $R_S = 0 \Omega$ with V+ from 5V to 30V; and over the full input common mode voltage range (0V to V+ 1.5V). - 4. The maximum output current is approximately 40mA independent of the magnitude of V+. Continuous short circuits at V+ > 15V can cause excessive power dissipation and eventual destruction. Short circuits from the output to V+ can cause overheating and eventual destruction of the device. Destructive dissipation can result from simultaneous short circuits on both amplifiers. #### Schematic Diagram #### ONE OF TWO OPERATIONAL AMPLIFIERS #### Typical Performance Curves (Continued) FIGURE 13. OUTPUT CURRENT VS AMBIENT TEMPERATURE #### Metallization Mask Layout Dimensions in parentheses are in millimeters and derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch). The photographs and dimensions represent a chip when it is part of the wafer. When the wafer is cut into chips, the cleavage angles are $57^{\rm o}$ instead of $90^{\rm o}$ with respect to the face of the chip. Therefore, the Isolated chip is actually 7 mils (0.17mm) larger in both dimensions.