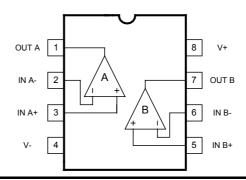

GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS

DESCRIPTION

The UTC LMV358 are low voltage (2.7-5.5V) versions of the dual and quad commodity op amps, LM358, which currently operate at 5-30V. The LMV358 are the most cost effective solutions for the applications where low voltage operation, space saving and low price are needed. They offer specifications that meet or exceed the familiar LM358. The LMV358 have rail-to-rail output swing capability and the input common-mode voltage range includes ground. They all exhibit excellent speed-power ratio, achieving 1 MHz of bandwidth and 1 V/µs of slew rate with low supply current.

The chips are built with National's advanced submicron silicon-gate BiCMOS process. The LMV358 have bipolar input and output stages for improved noise performance and higher output current drive.


FEATURES

APPLICATIONS

*Active Filters *General Purpose Low Voltage Applications *General Purpose Portable Devices

PIN CONFIGURATIONS

UTC UNISONIC TECHNOLOGIES CO.,LTD. 1

UTCLMV358 LINEAR INTEGRATED CIRCUIT ABSOLUTE MAXIMUM RATINGS

PARAMETER	VALUE	UNIT
ESD Tolerance(Note 2)		
Machine Model	100	V
Human Body Model	2000	V
Differential Input Voltage	+-Supply Voltage	
Supply Voltage (V ¹ -V)	5.5	V
Output Short Circuit to V ¹	(Note 3)	
Output Short Circuit to V	(Note 4)	
Mounting Temp.		
Lead Temp. (Soldering 10 sec)	260	°C
Infrared (15 sec)	215	٥°
Storage Temp. Range	-65 to 150	٥°
Junction Temp. (Tj, max) (Note 5)	150	°C

OPERATING RATINGS (NOTE 1)

PARAMETER	VALUE	UNIT
Supply Voltage	2.7 to 5.5	V
Temperature Range	-40<=Tj<=85	°C
Thermal Resistance (θJA) (Note 10)	235	°C/W

2.7V DC ELECTRICAL CHARACTERISTICS

Unless otherwise specified, all limits gu	aranteed for	Tj=25°C, V ¹ =2.7V, V=0V,	VCM=1.0V, V	/o=V ¹ /2 and F	RL=1MΩ

PARAMETER	SYMBOL	CONDITIONS	TYP	LIMIT	UNIT
			(note6)	(note7)	
Input Offset Voltage	Vos		1.7	7	mV
					max
Input Offset Voltage Average Drift	TCVos		5		μV/°C
Input Bias Current	ls		11	250	nA
					max
Input Offset Current	los		5	50	nA
					max
Common Mode Rejection Ratio	CMRR	0V<=VCM<=1.7V	63	50	dB
					min
Power Supply Rejection Ratio	PSRR	2.7V<=V ¹ <=5V	60	50	dB
		Vo=1V			min
Input Common-Mode Voltage Range	VCM	For CMRR>=50dB	-0.2	0	V
					min
			1.9	1.7	V
					max
Output Swing	Vo	RL=10kΩ to 1.35V	V ¹ -10	V ¹ -100	mV
					min
			60	180	mV
					max

UTC UNISONIC TECHNOLOGIES CO.,LTD. 2

PARAMETER	SYMBOL	CONDITIONS	TYP	LIMIT	UNIT
			(note6)	(note7)	
Supply Current	ls	Both amplifiers	140	340	μA
					max

2.7V AC ELECTRICAL CHARACTERISTICS

Unless otherwise specified, all limits guaranteed for Tj=25°C, V¹=2.7V, V=0V, Vcm=1.0V, Vo=V¹/2 and RL>1MΩ

PARAMETER	SYMBOL	CONDITIONS	TYP	LIMIT	UNIT
			(note6)	(note7)	
Gain-Bandwidth Product	GBWP	CL=200pF	1		MHz
Phase Margin	Φ(T)		60		Deg
Gain Margin	G(r)		10		dB
Input-Referred Voltage Noise	θr1	F=1kHz	46		<u>nV</u> √ Hz
Input-referred Current Noise	lr1	F=1kHz	0.17		<u>pA</u>
					√Hz

5V DC ELECTRICAL CHARACTERISTICS

Unless otherwise specified, all limits guaranteed for Tj=25°C, V¹=5V, V=0V, VcM=2.0V, Vo=V¹/2 and RL>1M Ω . Boldface limits apply at the temperature extremes.

PARAMETER	SYMBOL	CONDITIONS	TYP	LIMIT	UNIT
Input Offset Voltage	Vos		1.7	7	mV
				9	max
Input Offset Voltage Average Drift	TCVos		5		μV/°C
Input Bias Current	IB		15	250	nA
				500	max
Input Offset Current	los		5	50	nA
				150	max
Common Mode Rejection Ratio	CMRR	0V<=Vcm<=4V	65	50	dB
					min
Power Supply Rejection Ratio	PSRR	2.7V<=V ¹ <=5V	60	50	dB
		Vo=1V VCM=1V			min
Input Common-Mode Voltage Range	VCM	For CMRR>=50dB	-0.2	0	V
					min
			4.2	4	V
					max
Large Signal Voltage Gain(Note 8)	Av	RL=2kΩ	100	15	V/mV
				10	min
Output Swing	Vo	RL= $2k\Omega$ to 2.5V	V ¹ -40	V ¹ -300	mV
				V ⁺ -400	min
			120	300	mV
				400	max
	Vo	RL=10k Ω to 2.5V	V ¹ -10	V ¹ -100	mV
				V ⁺ -200	min
			65	180	mV
				280	max

UTC UNISONIC TECHNOLOGIES CO., LTD. 3

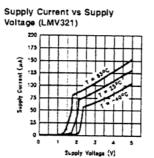
					,
PARAMETER	SYMBOL	CONDITIONS	TYP	LIMIT	UNIT
Output Short Circuit Current	lo	Sourcing,Vo=0V	60	5	mA
					min
		Sinking,Vo=5V	160	10	mA
					min
Supply Current	ls	Both amplifiers	210	440	μΑ
				615	max

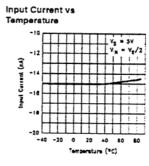
2.5V AC ELECTRICAL CHARACTERISTICS

Unless otherwise specified, all limits guaranteed for Tj=25°C, V1=2.7V, V=0V, VCM=2.0V, Vo=V1/2 and RL>1MΩ

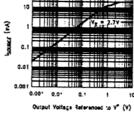
;;;;;;; _					
PARAMETER	SYMBOL	CONDITIONS	TYP	LIMIT	UNIT
Slew Rate	SR	(Note 9)	1		V/μs
Gain-Bandwidth Product	GBWP	CL=200pF	1		MHz
Phase Margin	Φ(T)		60		Deg
Gain Margin	G(r)		10		dB
Input-Referred Voltage Noise	θr1	f=1kHz	39		<u>nV</u> √ Hz
Input-referred Current Noise	lr1	f=1kHz	0.21		<u>pA</u> √ Hz

- Note1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performances is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
- Note2: Human body model $1.5k\Omega$ in series with 100pF. Machine model, 0Ω in series with 200pF.
- Note3: Shorting output to V¹ will adversely after reliability.
- Note4: Shorting output to V⁺ will adversely affect reliability.
- Note5: The maximum power dissipation is a function of Tj(max) 0JA and TA. The maximum allowable power dissipation at any ambient temperature is PD=(Tj(max)-TA)/0JA. All numbers apply for packages soldered directly into a PC board.
- Note6: Typical values represent the most likely parametric norm.
- Note7: All limits are guaranteed by testing or statistical analysis.
- Note8: RL is connected to V. The output voltages is 0.5V<=Vo<=4.5V.
- Note9: Connected as voltage follower with 3V step input. Number specified is thes lower of the positive and negative slew rates.
- Note10: all numbers are typical, and apply for packages soldered directly note a PC board is still air.

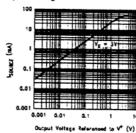

UTC UNISONIC TECHNOLOGIES CO., LTD.

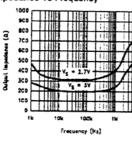

QW-R105-010.B

4


LINEAR INTEGRATED CIRCUIT UTC LMV358

TYPICAL PERFORMANCE CHARACTERISTICS (Unless otherwise specified,VE=+5V,single supply. TA=25°C)




Sourcing Current vs Output Voltage 100

Sourcing Current vs Output Voltage

Open Loop Output Impedance vs Frequency

• •

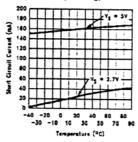
.

...

-... Short Circuit Current vs Temperature (Sinking)

Sinking Current vs

Output Voltage 100


3

X

0.0

0.00

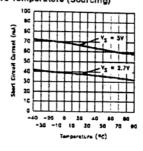
0.01

a. 1

Output Yoltage Refer

1

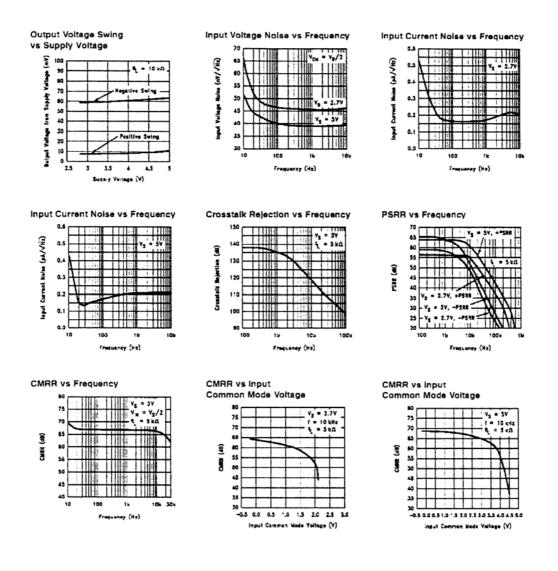
et to GHC (V)

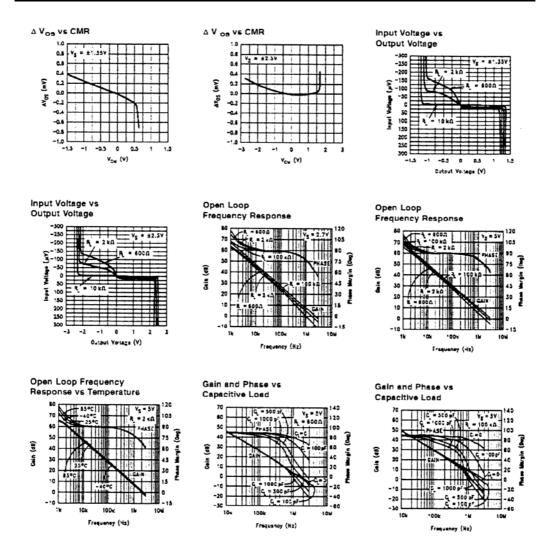

10

Short Circuit Current vs Temperature (Sourcing)

Sinking Current vs Output Voltage

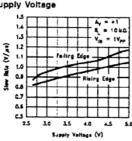
3

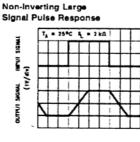

Ĭ


0.1

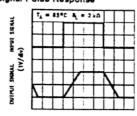
Voltage References to GND (V)

UTC UNISONIC TECHNOLOGIES CO., LTD. 5

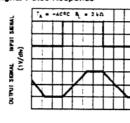



UTC UNISONIC TECHNOLOGIES CO., LTD. 6

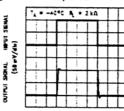
UTC UNISONIC TECHNOLOGIES CO., LTD. 7


Slew Rate vs Supply Voltage

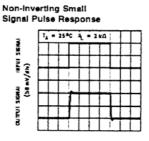
TIME (1 µs/div)


Non-Inverting Large Signal Puise Response

TIME (: ##/dtv)

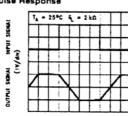

- 45"C & - 2 40

Non-Inverting Large Signal Pulse Response

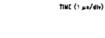


TINE (1 ma/div)

Non-Inverting Small Signal Pulse Response

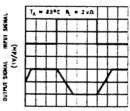


TINE (1 µa/div)



TWE (1 µs/div)

TIME (1 mm/dly)

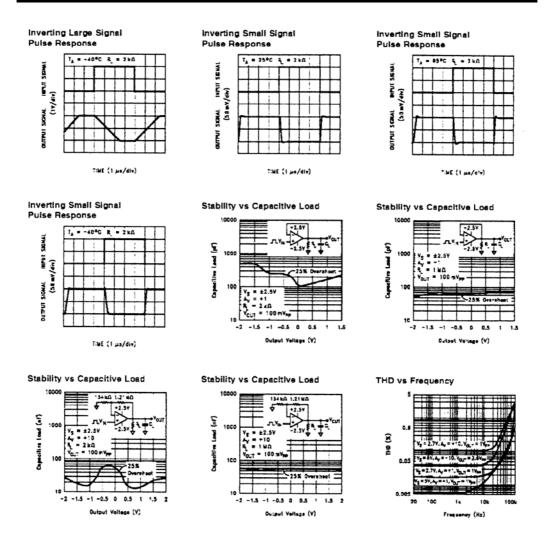


Non-Inverting Smeli Signel Puise Response

SENAI

(40/A# 05)

NUC OURUS


TINE (1 µs/div)

UTC UNISONIC TECHNOLOGIES CO., LTD.

UTC LMV358 LI

LINEAR INTEGRATED CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

UTC UNISONIC TECHNOLOGIES CO., LTD. 9