

3.3V CMOS 16-BIT BUFFER/ DRIVER WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O AND BUS-HOLD

IDT74LVCH16541A

FEATURES:

- Typical tsk(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP and 0.40mm pitch TVSOP packages
- Extended commercial range of -40°C to +85°C
- $V_{CC} = 3.3V \pm 0.3V$, Normal Range
- VCC = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4µW typ. static)
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

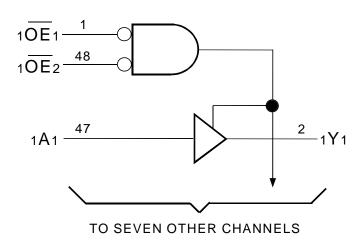
Drive Features for LVCH16541A

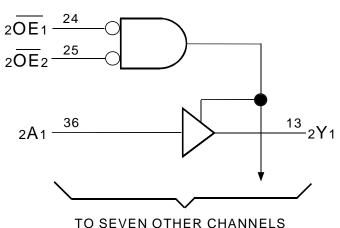
- High Output Drivers: ±24mA
- Reduced system switching noise

APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems

DESCRIPTION

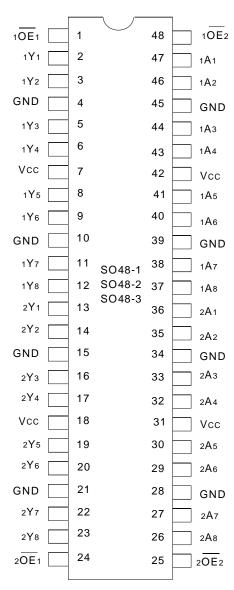

This 16-bit buffer/driver is built using advanced dual metal CMOS technology. This high-speed, low power device is a noninverting 16-bit buffer composed of two 8-bit sections with separate output-enable signals. For either 8-bit buffer section, the two output-enable ($1\overline{OE}1$ and $1\overline{OE}2$ or $2\overline{OE}1$ and $2\overline{OE}2$) inputs must be low for the corresponding Y outputs to be active. If either output-enable input is high, the outputs of that 8-bit buffer section are in the high-impedance state.


All pins of this 16-bit buffer/driver can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

The LVCH16541A has been designed with a ± 24 mA output driver. The driver is capable of driving a moderate to heavy load while maintaining speed performance.

The LVCH16541A has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

Functional Block Diagram



EXTENDED COMMERCIAL TEMPERATURE RANGE

MARCH 1999

PIN CONFIGURATION

SSOP/ TSSOP/ TVSOP TOP VIEW

PIN DESCRIPTION

Pin Names	Description
xŌĒ	3-State Output Enable Inputs (Active LOW)
xAx	Data Inputs ⁽¹⁾
хҮх	3-State Outputs

NOTE:

 These pins have "Bus-hold". All other pins are standard inputs, outputs, or I/Os.

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
V _{TERM} (3)	Terminal Voltage with Respect to GND	- 0.5 to +6.5	٧
Tstg	Storage Temperature	- 65 to +150	°C
Іоит	DC Output Current	- 50 to +50	mA
lıĸ	Continuous Clamp Current,	- 50	mA
Іок	VI < 0 or Vo < 0		
Icc	Continuous Current through	±100	mA
Iss	each Vcc or GND		LVC Link

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = $+25^{\circ}$ C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	6.5	8	pF
Cı/o	I/O Port Capacitance	VIN = 0V	6.5	8	pF
	1 1				LVC Li

NOTE:

1. As applicable to the device type.

FUNCTION TABLE (each 8-bit section) (1)

	Inputs	Outputs	
ŌE1	ŌE2	хАх	хҮх
L	L	L	L
L	L	Н	Н
Н	Х	Х	Z
Х	Н	Х	Z

NOTE:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40°C to +85°C

Symbol	Parameter		Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	٧
		Vcc = 2.7V to 3.6V		_	_	0.8	
lih lil	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	_	±5	μA
Гохн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	_	_	±10	μA
lozl	(3-State Output pins)						
loff	Input/Output Power Off Leakage	$VCC = 0V$, $VIN \text{ or } VO \leq 5.5V$		_	_	±50	μΑ
VIK	Clamp Diode Voltage	Vcc = 2.3V, lin = -1	8mA	_	- 0.7	- 1.2	V
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL ICCH	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or Vcc	_	_	10	μA
Iccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	_	10	
ΔΙCC	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V other inputs at Vcc or GND		_	_	500	μA LVC Lir

NOTES:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

2. This applies in the disabled state only.

BUS-HOLD CHARACTERISTICS

Parameter ⁽¹⁾		Test Conditions	Min.	Typ. ⁽²⁾	Max.	Unit
Bus-Hold Input Sustain Current	Vcc = 3.0V	VI = 2.0V	- 75	_	_	μA
		VI = 0.8V	75	_	_	
Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	_	_	_	μA
		VI = 0.7V	_	_	_	
Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	_	_	± 500	μA
						LVC Link
	Bus-Hold Input Sustain Current Bus-Hold Input Sustain Current	Bus-Hold Input Sustain Current Vcc = 3.0V Bus-Hold Input Sustain Current Vcc = 2.3V				

NOTES

1. Pins with Bus-hold are identified in the pin description.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test	Conditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc - 0.2	_	V
		Vcc = 2.3V	IOH = - 6mA	2	_	
		Vcc = 2.3V	IOH = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3.0V		2.4	_	
		Vcc = 3.0V	IOH = - 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IOL = 6mA	_	0.4	
			IoL = 12mA	_	0.7	
		Vcc = 2.7V	IoL = 12mA	_	0.4	
		Vcc = 3.0V	IoL = 24mA	_	0.55	

NOTE:

OPERATING CHARACTERISTICS, V_{CC} = 3.3V \pm 0.3V, T_{A} = 25°C

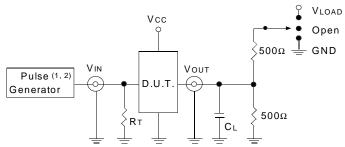
Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per buffer/driver Outputs enabled	CL = 0pF, f = 10Mhz	35	pF
CPD	Power Dissipation Capacitance per buffer/driver Outputs disabled		4	pF

SWITCHING CHARACTERISTICS (1)

		Vcc = 2.7V		Vcc = 3.3		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tplh	Propagation Delay	_	5	1.1	4.2	ns
tphl	xAx to xYx					
tpzh	Output Enable Time	_	6.9	1.5	5.6	
tpzl	x OE x to xYx					ns
tphz	Output Disable Time	_	7.4	1.9	6.8	
tplz	xŌĒx to xYx					ns
tsk(o)	Output Skew ⁽²⁾	_	_	_	500	ps

NOTES:

- 1. See test circuits and waveforms. $T_A = -40$ °C to + 85°C.
- 2. Skew between any two outputs of the same package and switching in the same direction.


^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to +85°C.

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

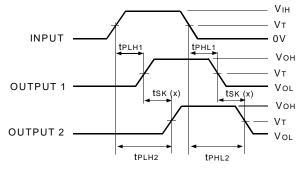
Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	Vcc ⁽¹⁾ = 2.7V	$Vcc^{(2)} = 2.5V \pm 0.2V$	Unit
VLOAD	6	6	2 x Vcc	٧
VIH	2.7	2.7	Vcc	٧
VT	1.5	1.5	Vcc/2	٧
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF
				LVC Link

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

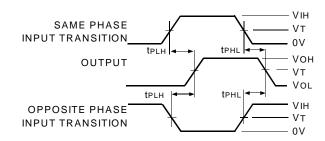

NOTES:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz: tF \leq 2ns: tR \leq 2ns.

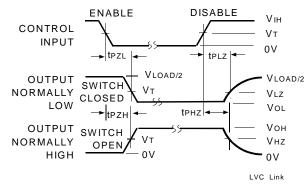
SWITCH POSITION

Switch
Vload
GND
Open

OUTPUT SKEW - tsk (x)

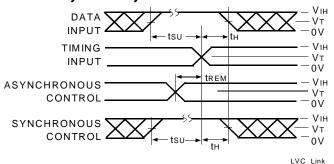


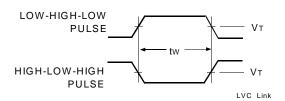
tsk(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|


NOTES:

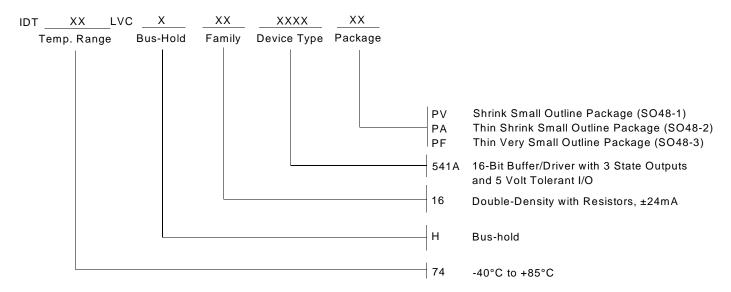
- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY


LVC Link **ENABLE AND DISABLE TIMES**


NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.


SET-UP, HOLD, AND RELEASE

PULSE WIDTH

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*