SCDS045A - DECEMBER 1997 - REVISED MARCH 1998

- 5-Ω Switch Connection Between Two Ports
- Isolation Under Power-Off Conditions
- B-Port Outputs are Precharged by Bias Voltage to Minimize Signal Distortion During Live Insertion
- Package Options Include Plastic Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV), and 300-mil Shrink Small-Outline (DL) Packages

description

The CBTLV16215 provides 20 bits of high-speed bus switching. The low on-state resistance of the switch allows connections to be made with minimal propagation delay. The device also precharges the B port to a user-selectable bias voltage (BIASV) to minimize live-insertion noise.

The device is organized as dual 10-bit bus switches with separate output-enable (\overline{OE}) inputs. It can be used as two 10-bit bus switches or one 20-bit bus switch. When \overline{OE} is low, the associated 10-bit bus switch is on and port A is connected to port B. When \overline{OE} is high, the switch is open, a high-impedance state exists between the two ports, and port B is precharged to BIASV through the equivalent of a $10\text{-k}\Omega$ resistor.

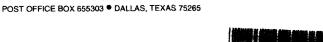
DGG, DGV, OR DL PACKAGE (TOP VIEW)

BIASV [1	ر 48	10E
1A1 [2	47	20E
1A2 [3	46] 1B1
1A3 [4	45] 1B2
1A4 [5	44] 1B3
1A5 [6	43] 1B4
1A6 [7	42] 1B5
GND [GND
1A7 [9] 1B6
1A8 [39] 1B7
1A9 [] 1B8
1A10 [] 1B9
2A1 [] 1B10
2A2 [2B1
v _{cc} [2B2
2A3 [2B3
GND [] GND
2A4 [] 2B4
2 A 5 [2B5
2 A 6 [2B6
2A7 [2B7
2A8 [2B8
2A9 [2B9
2A10 [24	25	2B10
			•

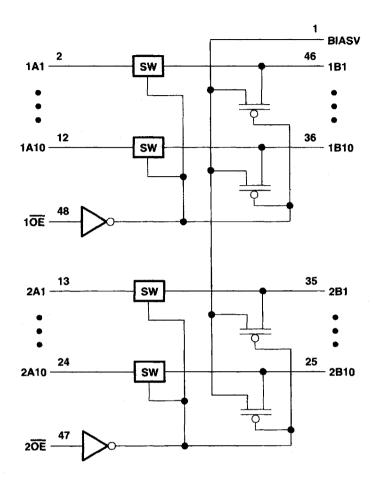
To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The CBTLV16215 is characterized for operation from -40°C to 85°C.

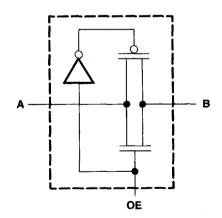
FUNCTION TABLE


INPUT OE	FUNCTION
L	A port = B port
н	A port = Z B port = BIASV

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


TEXAS INSTRUMENTS

Copyright © 1998, Texas Instruments Incorporated



CBTLV16215 LOW-VOLTAGE 20-BIT FET BUS SWITCH WITH PRECHARGED OUTPUTS SCDS045A - DECEMBER 1997 - REVISED MARCH 1998

logic diagram

simplified schematic, each FET switch

SCDS045A - DECEMBER 1997 - REVISED MARCH 1998

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		
Bias voltage range, BIASV		
Input voltage range, V _I (see Note 1)		
Continuous channel current	,	128 mA
Input clamp current, $I_{IK}(V_I < 0)$		–50 mA
Package thermal impedance, θ _{JA} (see Note 2):	: DGG package	89°C/W
	DGV package	93°C/W
	DL package	94°C/W
Storage temperature range, T _{stg}		-65 C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratin is only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
Vcc	Supply voltage		2.3	3.6	٧
BIASV	Bias voltage		0	VCC	٧
V	High-level control input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V
VIH	nigir-level control input voltage	V _{CC} = 2.7 V to 3.6 V	2		v
		$V_{CC} \approx 2.3 \text{ V to } 2.7 \text{ V}$		0.7	
VIL	Low-level control input voltage	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	[0.8	٧
TA	Operating free-air temperature		-40	85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAI	RAMETER		TEST CONDITIO	NS	MIN	TYP‡	MAX	UNIT
ViK		V _{CC} = 3 V,	lı = -18 mA				-1.2	٧
lj		$V_{CC} = 3.6 \text{ V},$	$V_I = V_{CC}$ or GND				±5	μА
loff		$V_{CC} = 0$,	V _I or V _O = 0 to 3.6 V				10	μΑ
lo		V _{CC} = 3 V,	BIASV = 2.4 V,	VO= 0	0.25			mA
lcc		$V_{CC} = 3.6 \text{ V},$	I _O = 0,	V _I = V _{CC} or GND			10	μΑ
ΔICC§	Control inputs	$V_{CC} = 3.6 \text{ V},$	One input at 3 V,	Other inputs at VCC or GND			500	μА
Ci	Control inputs	V ₁ = 3 V or 0						pF
C _{o(OFF}	=)	$V_0 = 3 \text{ V or } 0,$	Switch off					pF
`		V _{CC} = 2.3 V, TYP at V _{CC} = 2.5 V	V ₁ = 0	l ₁ = 64 mA				
				I _I = 24 mA				
G		1111 all vice = 2.5 v	V _j = 1.7 V,	l _l = 15 mA				Ω
ron [¶]				I _I = 64 mA				
		VCC = 3 V	V _j = 0	I _I = 24 mA				
			V ₁ = 2.4 V,	l _į = 15 mA				

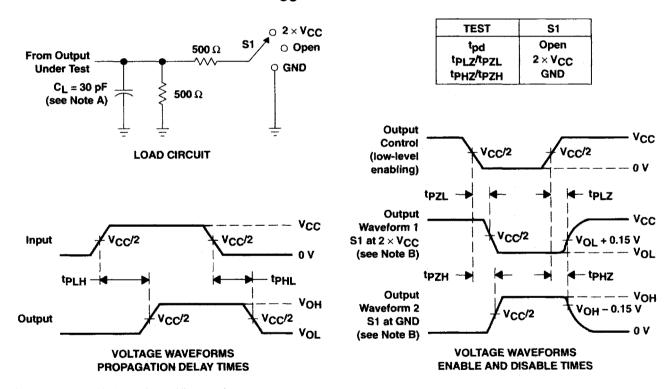
[‡] All typical values are at V_{CC} = 3.3 V (unless otherwise noted), T_A = 25°C.

Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observ d.

^{2.} The package thermal impedance is calculated in accordance with JESD 51.

[§] This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.


SCDS045A - DECEMBER 1997 - REVISED MARCH 1998

switching characteristics over recommended operating free-air temperature range, (unless otherwise noted) (see Figures 1 and 2)

PARAMETER	ARAMETER TEST FROM TO (INPUT) (OUTPUT)	**			V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V	
		MIN	MAX	MIN	MAX			
t _{pd} †		A or B	B or A					ns
^t PZH	BIASV = GND	ŌĒ	A or B					
^t PZL	BIASV = 3 V							ns
^t PHZ	BIASV = GND	ŌĒ	A or B					
[†] PLZ	BIASV = 3 V]						ns

[†] The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified lo dicapacitance, when driven by an ideal voltage source (zero output impedance).

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$

NOTES: A. C_L includes probe and jig capacitance.

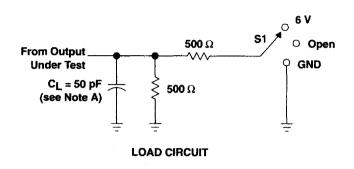
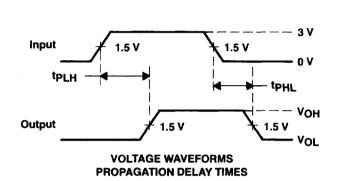
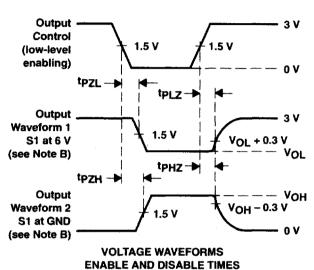

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \ \Omega$, $t_f \leq 2 \ ns$, $t_f \leq 2 \ ns$.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten-
- G. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms




SCDS045A - DECEMBER 1997 - REVISED MARCH 1998

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 3.3 V \pm 0.3 V$

TEST	S1
^t pd	Open
tPLZ/tPZL	6 V
tpHZ/tpZH	GND

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{Ω} = 50 Ω , $t_{r} \leq$ 2.5 ns, $t_{f} \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tplH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

