
- EPIC™ (Enhanced-Performance Implanted CMOS) Submicron Process
- DOC™ (Dynamic Output Control) Circuit Dynamically Changes Output Impedance, Resulting in Noise Reduction Without Speed Degradation
- Dynamic Drive Capability Is Equivalent to Standard Outputs With I_{OH} and I_{OL} of ±24 mA at 2.5-V V_{CC}
- Overvoltage-Tolerant Inputs/Outputs Allow Mixed-Voltage-Mode Data Communications
- I_{off} Supports Partial-Power-Down Mode Operation
- Package Options Include Plastic Small-Outline (D), Thin Very Small-Outline (DGV), and Thin Shrink Small-Outline (PW) Packages

description

A Dynamic Output Control (DOC) circuit is implemented, which, during the transition, initially lowers the output impedance to effectively drive the load and, subsequently, raises the impedance to reduce noise. Figure 1 shows typical V_{OL} vs I_{OL} and V_{OH} vs I_{OH} curves to illustrate the output impedance and drive capability of the circuit. At the beginning of the signal transition, the DOC circuit provides a maximum dynamic drive that is equivalent to a high-drive standard-output device. For more information, refer to the TI application reports, *AVC Logic Family Technology and Applications*, literature number SCEA006, and *Dynamic Output Control (DOC*TM) *Circuitry Technology and Applications*, literature number SCEA009.

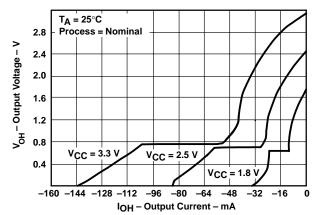
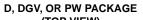
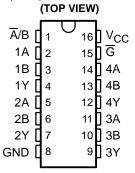


Figure 1. Output Voltage vs Output Current

This quadruple 2-line to 1-line data selector/multiplexer is operational at 1.2-V to 3.6-V V_{CC} , but is designed specifically for 1.65-V to 3.6-V V_{CC} operation.

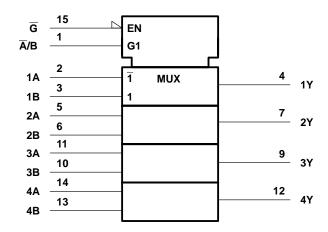

The SN74AVC157 features a common strobe (\overline{G}) input. When the strobe is high, all outputs are low. When the strobe is low, a 4-bit word is selected from one of two sources and is routed to the four outputs. The device provides true data.


This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The SN74AVC157 is characterized for operation from -40°C to 85°C.

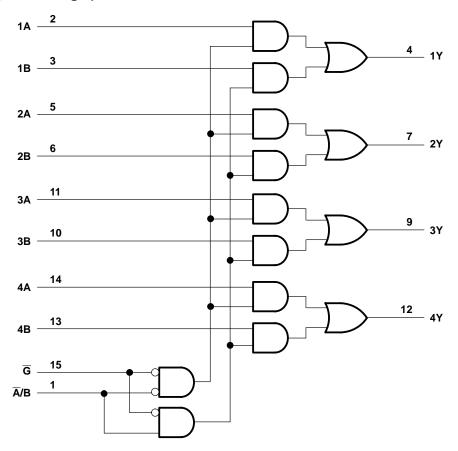
TEXAS
INSTRUMENTS

terminal assignments



FUNCTION TABLE

	INPU		OUTPUT	
G	A/B	Α	В	Y
Н	Х	Χ	Х	L
L	L	L	X	L
L	L	Н	X	Н
L	Н	Χ	L	L
L	Н	Χ	Н	Н


logic symbol†

PRODUCT PREVIEW

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V_{CC}	: D package	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	DGV package	120°C/W
	PW package	108°C/W
Storage temperature range, T _{stg}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT				
\/	Cumply welters	Operating	1.4	3.6	V				
Vcc	Supply voltage Data retention onl		1.2		V				
		V _{CC} = 1.2 V	VCC						
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	$0.65 \times V_{CC}$						
VIН	High-level input voltage	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	0.65 × V _{CC}		V				
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7						
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	2						
		V _{CC} = 1.2 V		GND					
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		0.35 × V _{CC}					
V_{IL}	Low-level input voltage	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		0.35 × V _{CC}	V				
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7					
		V _{CC} = 3 V to 3.6 V		0.8					
٧ _I	Input voltage		0	3.6	V				
\/o	Output voltogo	Active state	0	VCC	V				
۷o	Output voltage	3-state	0	3.6	ľ				
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		-2					
	Static high-level output current [†]	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		-4	mA				
IOHS	Static high-level output current	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-8	mA				
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		-12					
		V _{CC} = 1.4 V to 1.6 V		2					
	Static low-level output current [†]	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		4	1				
lols	Static low-level output current	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		8	mA				
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		12					
Δt/Δν	Input transition rise or fall rate	V _{CC} = 1.4 V to 3.6 V		5	ns/V				
T _A	Operating free-air temperature		-40	85	°C				

T Dynamic drive capability is equivalent to standard outputs with IOH and IOL of ±24 mA at 2.5-V VCC. See Figure 1 for VOL vs IOL and VOH vs IOH characteristics. Refer to the TI application reports, AVC Logic Family Technology and Applications, literature number SCEA006, and Dynamic Output Control (DOC™) Circuitry Technology and Applications, literature number SCEA009.

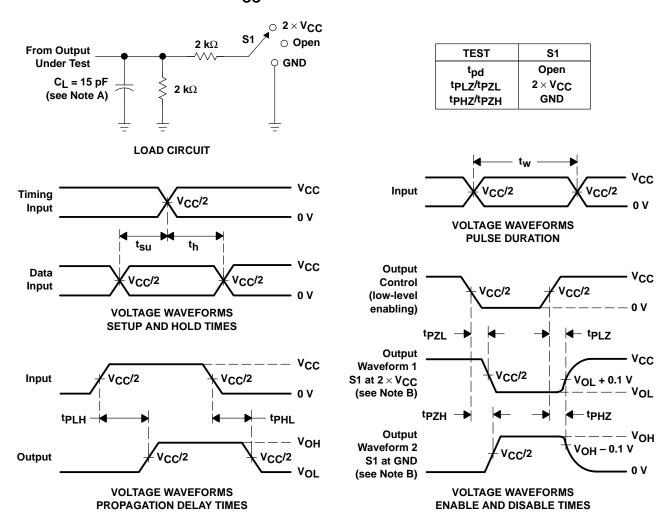
NOTE 4: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

PRODUCT PREVIEW

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST	CONDITIONS	VCC	MIN	TYP [†]	MAX	UNIT
	I _{OHS} = -100 μA		1.4 V to 3.6 V	V _{CC} -0.2	2		
	$I_{OHS} = -2 \text{ mA},$	V _{IH} = 0.91 V	1.4 V	1.05			
Voн	IOHS = -4 mA,	V _{IH} = 1.07 V	1.65 V	1.2			V
	$I_{OHS} = -8 \text{ mA},$	V _{IH} = 1.7 V	2.3 V	1.75			
	$I_{OHS} = -12 \text{ mA},$	V _{IH} = 2 V	3 V	2.3			
	I _{OLS} = 100 μA		1.4 V to 3.6 V			0.2	
	IOLS = 2 mA,	V _{IL} = 0.49 V	1.4 V			0.4	
V _{OL}	I _{OLS} = 4 mA,	V _{IL} = 0.57 V	1.65 V			0.45	V
	$I_{OLS} = 8 \text{ mA},$	$V_{IL} = 0.7 V$	2.3 V			0.55	
	I _{OLS} = 12 mA,	$V_{IL} = 0.8 V$	3 V			0.7	
l _l	$V_I = V_{CC}$ or GND		3.6 V			±2.5	μΑ
l _{off}	V_I or $V_O = 3.6 V$		0			±10	μΑ
Icc	$V_I = V_{CC}$ or GND,	IO = 0	3.6 V			40	μΑ
C	V V ar CND		2.5 V				pF
C _i	$V_I = V_{CC}$ or GND		3.3 V				þΓ

[†] Typical values are measured at $T_A = 25^{\circ}C$.

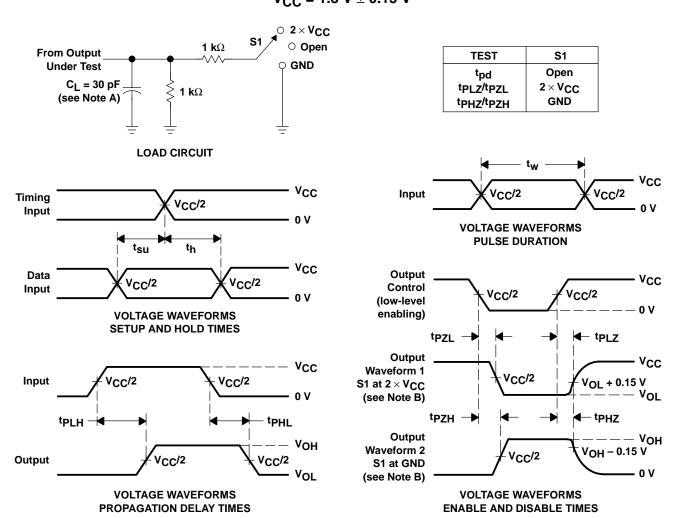

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 2 through 5)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.2 V	V _{CC} =	1.5 V 1 V	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
	(INT OT)	(0011 01)	TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
^t pd	A or B											
	Ā/B	Y										ns
	G											

operating characteristics, T_A = 25°C

PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT
		TEST CONDITIONS	TYP	TYP	TYP	UNIT
C _{pd} Power dissipation capacitance		$C_L = 0$, $f = 10 \text{ MHz}$				pF

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.2 \text{ V}$ AND $1.5 \text{ V} \pm 0.1 \text{ V}$

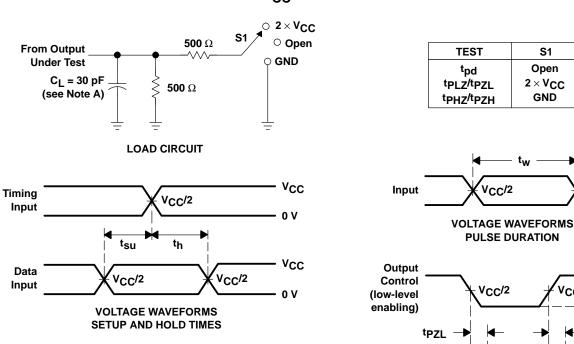


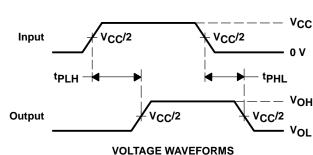
NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$




NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z $_{O}$ = 50 Ω , $t_{f} \leq$ 2 ns, $t_{f} \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. tpz and tpzH are the same as ten.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 3. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 V \pm 0.2 V$

PROPAGATION DELAY TIMES

VCC V_{CC}/2 V_{CC}/2 0 V - tPLZ Output **VCC** Waveform 1 V_{CC}/2 V_{OL} + 0.15 V S1 at $2 \times V_{CC}$ (see Note B) ^tPZH ^tPHZ Output Waveform 2 V_{OH} - 0.15 V S1 at GND (see Note B) **VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES**

V_{CC}/2

S1

Open

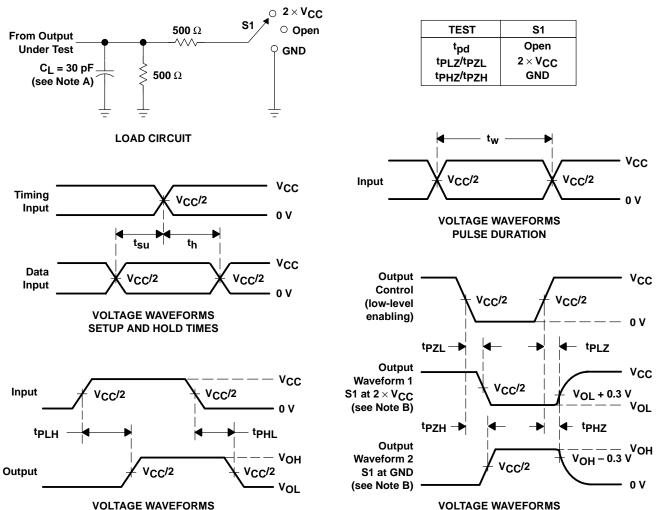
 $2 \times V_{CC}$

GND

VCC

0 V

V_{CC}/2


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzi and tpzH are the same as ten.
- G. tplH and tpHL are the same as tpd.

Figure 4. Load Circuit and Voltage Waveforms

ENABLE AND DISABLE TIMES

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50~\Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpl 7 and tpHZ are the same as tdis.

PROPAGATION DELAY TIMES

- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. tpLH and tpHL are the same as tpd.

Figure 5. Load Circuit and Voltage Waveforms