

CD74LPT245

December 1996

Fast CMOS 3.3V 8-Bit Bidirectional Transceiver

Features

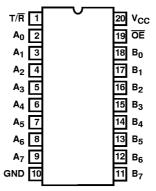
- · Advanced 0.6 micron CMOS Technology
- Compatible with LCX™ Families of Products
- Supports 5V Tolerant Mixed Signal Mode Operation
 - Input Can Be 3V or 5V
 - Output Can Be 3V or Connected to 5V Bus
- Advanced Low Power CMOS Operation
- Excellent Output Drive Capability:
 - Balanced Drives (24mA Sink and Source)
- · Low Ground Bounce Outputs
- · Hysteresis on All Inputs

Description

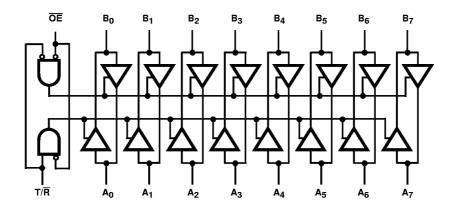
The CD74LPT245 is an 8-bit bidirectional transceiver designed for asynchronous two-way communication between data buses. The transmit/receive input pin (T/\overline{R}) determines the direction of data flow through the bidirectional transceiver. Transmit (active HIGH) enables data from A ports to B ports, and receive (active LOW) from B ports to A ports. The output enable (\overline{OE}) input, when HIGH, disables both A and B ports by placing them in HIGH Z condition.

The CD74LPT245 can be driven from either 3.3V or 5.0V devices allowing this device to be used as a translator in a mixed 3.3/5.0V system.

Ordering Information


PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. NO.
CD74LPT245AM	-40 to 85	20 Ld SOIC	M20.3-P
CD74LPT245AQM	-40 to 85	20 Ld QSOP	M20.15-P
CD74LPT245CM	-40 to 85	20 Ld SOIC	M20.3-P
CD74LPT245CQM	-40 to 85	20 Ld QSOP	M20.15-P
CD74LPT245M	-40 to 85	20 Ld SOIC	M20.3-P
CD74LPT245QM	-40 to 85	20 Ld QSOP	M20.15-P

NOTE: QSOP is commonly known as SSOP.


When ordering, use the entire part number. Add the suffix 96 to obtain the variant in the tape and reel.

Pinout

CD74LPT245 (QSOP, SOIC) TOP VIEW

Functional Block Diagram

TRUTH TABLE (NOTE 1)

(NOTE 1) INPUTS		(NOTE 1)
ŌĒ	T/R	OUTPUTS
L	L	Bus B Data to Bus A
L	Н	Bus A Data to Bus B
Н	Х	High Z State

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level
X = Don't Care
Z = High Impedance

Pin Descriptions

PIN NAME	DESCRIPTION			
ŌĒ	Three-State Output Enable Inputs (Active LOW)			
T/R	Direction Control Input			
A ₇ -A ₀	Side A Inputs or Three-State Outputs			
B ₇ -B ₀	Side B Inputs or Three-State Outputs			
GND	Ground			
V _{CC}	Power			

CD74LPT245

Absolute Maximum Ratings Thermal Information θ_{JA} (°C/W) DC Input Voltage-0.5V to 7.0V Thermal Resistance (Typical, Note 2) 87 **Operating Conditions** Maximum Storage Temperature Range $\dots \dots .-65^{o}\text{C}$ to 150^{o}C Maximum Lead Temperature (Soldering 10s).....300°C Supply Voltage to Ground Potential (Lead Tips Only) Inputs and V_{CC} Only-0.5V to 7.0V Supply Voltage to Ground Potential Outputs and D/O Only. -0.5V to 7.0V

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

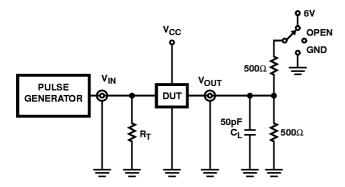
Electrical Specifications

PARAMETER	SYMBOL	(NOTE 3) TEST CONDITI	MIN	(NOTE 4)	MAX	UNITS	
DC ELECTRICAL SPE	CIFICATION	NS Over the Operating Range, T _A	= -40 $^{\rm o}$ C to 85 $^{\rm o}$ C, V _C	_{CC} = 2.7V to 3	3.6V		-
Input HIGH Voltage (Input Pins)	V _{IH}	Guaranteed Logic HIGH Level		2.2	-	5.5	٧
Input HIGH Voltage (I/O Pins)	V _{IH}	Guaranteed Logic HIGH Level		2.0	-	5.5	٧
Input LOW Voltage (Input and I/O Pins)	V _{IL}	Guaranteed Logic LOW Level		-0.5	-	0.8	٧
Input HIGH Current (Input Pins)	lн	V _{CC} = Max	V _{IN} = 5.5V	-	-	±1	μΑ
Input HIGH Current (I/O Pins)	lн	V _{CC} = Max	V _{IN} = V _{CC}	-	-	±1	μΑ
Input LOW Current (Input Pins)	I _{IL}	V _{CC} = Max	V _{IN} = GND	-	-	±1	μΑ
Input LOW Current (I/O Pins)	IIL	V _{CC} = Max	V _{IN} = GND	-	-	±1	μΑ
High Impedance	lozh	$V_{CC} = Max$ $V_{OUT} = 5.5V$		-	-	±1	μА
Output Current (Three-State)	l _{OZL}	V _{CC} = Max	V _{OUT} = GND	-	-	±1	μΑ
Clamp Diode Voltage	V _{IK}	V _{CC} = Min, I _{IN} = -18mA		-	-0.7	-1.2	٧
Output HIGH Current	lodh	$V_{CC} = 3.3V$, $V_{IN} = V_{IH}$ or V_{IL} , $V_{O} = 1.5V$ (Note 5)		-36	-60	-110	mA
Output LOW Current	l _{ODL}	$V_{CC} = 3.3V$, $V_{IN} = V_{IH}$ or V_{IL} , $V_{O} = 1.5V$ (Note 5)		50	90	200	mA
Output HIGH Voltage	V _{OH}	$V_{CC} = Min, V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -0.1 \text{mA}$		V _{CC} - 0.2	-	-	٧
			I _{OH} = -3mA	2.4	3.0	-	٧
		$V_{CC} = 3.0V$, $V_{IN} = V_{IH}$ or V_{IL}	I _{OH} = -8mA	2.4 (Note 7)	3.0	-	٧
			I _{OH} = -24mA	2.0	-	-	٧
Output LOW Voltage	V _{OL}	V_{CC} = Min, V_{IN} = V_{IH} or V_{IL}	I _{OL} = 0.1mA	-	-	0.2	٧
			I _{OL} = 16mA	-	0.2	0.4	٧
			I _{OL} = 24mA	-	0.3	0.5	٧

CD74LPT245

Electrical Specifications (Continued)

PARAMETER	SYMBOL	(NOTE 3) TEST CONDIT	MIN	(NOTE 4) TYP	MAX	UNITS	
Short Circuit Current (Note 6)	los	V _{CC} = Max (Note 5), V _{OUT} = G	V _{CC} = Max (Note 5), V _{OUT} = GND		-85	-240	mA
Power Down Disable	l _{OFF}	$V_{CC} = 0V$, V_{IN} or $V_{OUT} \le 4.5V$				±100	μА
Input Hysteresis	V _H			-	150	-	mV
CAPACITANCE T _A = 2	25 ⁰ C, f = 1Ml	- Hz					
Input Capacitance (Note 8)	C _{IN}	V _{IN} = 0V		-	4.5	6	pF
Output Capacitance (Note 8)	C _{OUT}	V _{OUT} = 0V		-	5.5	8	pF
POWER SUPPLY SPE	CIFICATION	ıs					
Quiescent Power Supply Current	lcc	V _{CC} = Max	V _{IN} = GND or V _{CC}	-	0.1	10	μА
Quiescent Power Supply Current TTL Inputs HIGH	Δl _{CC}	V _{CC} = Max	V _{IN} = VCC - 0.6V (Note 9)	-	2.0	30	μА
Dynamic Power Supply Current (Note 10)	ICCD	V _{CC} = Max, Outputs Open OE = GND One Bit Toggling 50% Duty Cycle	V _{IN} = V _{CC} V _{IN} = GND	-	50	75	μ A / MHz
Total Power Supply Current (Note 12)	l _C	V _{CC} = Max, Outputs Open f _I = 10MHz, 50% Duty Cycle OE = GND One Bit Toggling	$V_{IN} = V_{CC} - 0.6V$ $V_{IN} = GND$	-	0.6	2.3	mA
		V_{CC} = Max, Outputs Open f_{\parallel} = 2.5MHz, 50% Duty Cycle \overline{OE} = GND 8 Bits Toggling	V _{IN} = V _{CC} - 0.6V V _{IN} = GND	-	2.1	4.7 (Note 11)	mA


Switching Specifications Over Operating Range (NOTE 13)

		(NOTE 14)	CD74LPT245		CD74LPT245A		CD74LPT245C		
PARAMETER	SYMBOL	TEST CONDITIONS	(NOTE 15) MIN	MAX	(NOTE 15) MIN	MAX	(NOTE 15) MIN	MAX	UNITS
Propagation Delay A to B, B to A	t _{PLH,} t _{PHL}	$C_L = 50pF$ $R_L = 500\Omega$	1.5	7.0	1.5	4.6	1.5	4.1	ns
Output Enable Time OE to A or B	t _{PZH,} t _{PZL}		1.5	8.5	1.5	6.2	1.5	5.8	ns
Output Disable Time OE to A or B (Note 16)	t _{PHZ,} t _{PLZ}		1.5	7.5	1.5	5.0	1.5	4.8	ns
Output Enable Time T/R to A or B	t _{PZH,} t _{PZL}		1.5	8.5	1.5	6.2	1.5	5.8	ns
Output Disable Time T/R to A or B (Note 16)	t _{PHZ,} t _{PLZ}		1.5	7.5	1.5	5.0	1.5	4.8	ns
Output Skew (Note 17)	t _{SK(O)}		-	0.5	-	0.5	-	0.5	ns

NOTES:

- 3. For conditions shown as Max or Min, use appropriate value specified under Electrical Specifications for the applicable device type.
- 4. Typical values are at $V_{CC} = 3.3V$, $25^{\circ}C$ ambient and maximum loading.
- 5. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 6. This parameter is guaranteed but not tested.
- 7. VOH = VCC 0.6V at rated current.
- 8. This parameter is determined by device characterization but is not production tested.
- 9. Per TTL driven input; all other inputs at V_{CC} or GND.
- 10. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 11. Values for these conditions are examples of the I_{CC} formula. These limits are guaranteed but not tested.
- 12. I_C = I_{QUIESCENT} + I_{INPUTS} + I_{DYNAMIC}
 - $I_C = I_{CC} + \Delta I_{CC} D_H N_T + I_{CCD} (f_{CP}/2 + f_I N_I)$
 - I_{CC} = Quiescent Current
 - ΔI_{CC} = Power Supply Current for a TTL High Input
 - DH = Duty Cycle for TTL Inputs High
 - N_T = Number of TTL Inputs at D_H
 - I_{CCD} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
 - f_{CP} = Clock Frequency for Register Devices (Zero for Non-Register Devices)
 - f_I = Input Frequency
 - N_I = Number of Inputs at f_I
 - All currents are in milliamps and all frequencies are in megahertz.
- 13. Propagation Delays and Enable/Disable times are with V_{CC} = 3.3V ±0.3V, normal range. For V_{CC} = 2.7V, extended range, all Propagation Delays and Enable/Disable times should be degraded by 20%.
- 14. See test circuit and wave forms.
- 15. Minimum limits are guaranteed but not tested on Propagation Delays.
- 16. This parameter is guaranteed but not production tested.
- 17. Skew between any two outputs, of the same package, switching in the same direction. This parameter is guaranteed by design.

Test Circuits and Waveforms

NOTE:

18. Pulse Generator for All Pulses: Rate \leq 1.0MHz; $Z_{OUT} \leq$ 50 $\Omega;$ $t_f,\,t_r \leq$ 2.5ns.

FIGURE 1. TEST CIRCUIT

SWITCH POSITION

TEST	SWITCH
t _{PLZ} , t _{PZL} , Open Drain	6V
t _{PHZ} , t _{PZH}	GND
t _{PLH} , t _{PHL}	Open

DEFINITIONS:

C_L = Load capacitance, includes jig and probe capacitance.

 R_T^{-} = Termination resistance, should be equal to Z_{OUT}^{-} of the Pulse Generator.

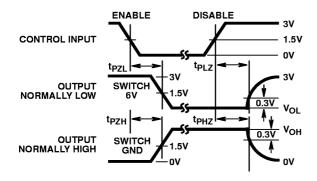


FIGURE 2. ENABLE AND DISABLE TIMING

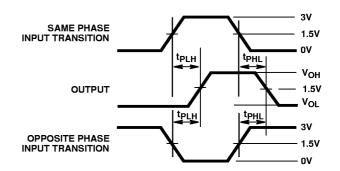


FIGURE 3. PROPAGATION DELAY