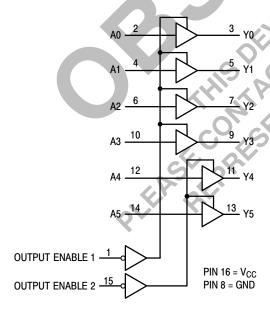
Hex 3-State Noninverting Buffer with Separate 2-Bit and 4-Bit Sections


High-Performance Silicon-Gate CMOS

The MC74HC367A is identical in pinout to the LS367. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

This device is arranged into 2-bit and 4-bit sections, each having its own active-low Output Enable. When either of the enables is high, the affected buffer outputs are placed into high-impedance states. The HC367A has noninverting outputs.

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2 to 6 V
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 92 FETs or 23 Equivalent Gates

LOGIC DIAGRAM

ON Semiconductor®

http://onsemi.com

N SUFFIX PLASTIC PACKAGE

16-LEAD CASE 648-08

D SUFFIX

SOIC PACKAGE 16-LEAD CASE 751B-05

DT SUFFIX

TSSOP PACKAGE 16-LEAD CASE 948F-01

ORDERING INFORMATION

MC74HCXXXAN Plastic MC74HCXXXAD SOIC MC74HCXXXADT TSSOP

PIN ASSIGNMENT

OUTPUT ENABLE 1	1 •	16	v _{cc}
ENABLE 1 4	1 •	10	
A0 [2	15	OUTPUT ENABLE 2
Y0 [3	14] A5
A1 [4	13	Y5
Y1 [5	12	A4
A2 [6	11	Y4
Y2 [7	10	A3
GND [8	9	Y3

FUNCTION TABLE

Inpu	Output	
Enable 1, Enable 2	Α	Υ
L	L	L
L	Н	Н
Н	Х	Z

X = don't care Z = high impedance

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	- 0.5 to + 7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	- 0.5 to V _{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to V_{CC} + 0.5	V
I _{in}	DC Input Current, per Pin	±[2 0	mA
I _{out}	DC Output Current, per Pin	±[2 5	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins	±[5 0	mA
P _D	Power Dissipation in Still Air, Plastic DIP† SOIC Package† TSSOP Package†	750 500 450	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds Plastic DIP, SOIC or TSSOP Package	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and Vout should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC}.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

RECOMMENDED OPERATING CONDITIONS

For high fre	TSSOP Package: – 6.1 mW/°C from 6 quency or heavy load considerations, se	5° to 125°C	ne Motor	ola High	-Speed	d CMOS Data Book (DL12
RECOMM	ENDED OPERATING CONDITIONS		\mathbf{X}			IN WINDS
Symbol	Parameter		Min	Max	Unit	(C, D)
V _{CC}	DC Supply Voltage (Referenced to GND))	2.0	6.0	V	
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)		0	V_{CC}	V	.01
T _A	Operating Temperature, All Package Ty	oes	- 55	+ 125	°C	
t _r , t _f	Input Rise and Fall Time (Figure 1)	$V_{CC} = 2.0 \text{ V}$ $V_{CC} = 3.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$	0 0 0 0	1000 600 500 400	ns	

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Guaranteed Limit			
Symbol	Parameter	Test Conditions	V _{CC} V	– 55 to 25°C	≤ 85 °C	≤ 125°C	Unit
V _{IH}	Minimum High-Level Input Voltage	$\begin{aligned} V_{out} &= V_{CC} - 0.1 \text{ V} \\ I_{out} &\leq 20 \mu\text{A} \end{aligned}$	2.0 3.0 4.5 6.0	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	V
V _{IL}	Maximum Low-Level Input Voltage	$V_{out} = 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	2.0 3.0 4.5 6.0	0.50 0.90 1.35 1.80	0.50 0.90 1.35 1.80	0.50 0.90 1.35 1.80	V
V _{OH}	Minimum High-Level Output Voltage	$V_{in} = V_{IH}$ $ I_{out} \le 20 \mu A$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		$\begin{aligned} V_{in} = V_{IH} & & I_{out} \leq 3.6 \text{ mA} \\ & I_{out} \leq 6.0 \text{ mA} \\ & I_{out} \leq 7.8 \text{ mA} \end{aligned}$	4.5	2.48 3.98 5.48	2.34 3.84 5.34	2.20 3.70 5.20	

^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

Plastic DIP: - 10 mW/°C from 65° to 125°C SOIC Package: - 7 mW/°C from 65° to 125°C TSSOP Package: - 6.1 mW/°C from 65° to 125°C

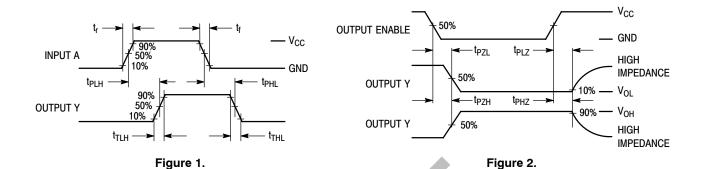
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Guaranteed Limit			
Symbol	Parameter	Test Conditions	V _{CC} V	– 55 to 25°C	≤ 85 °C	≤ 125°C	Unit
V _{OL}	Maximum Low-Level Output Voltage	$V_{in} = V_{IL}$ $ I_{out} \le 20 \mu A$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$\label{eq:Vin} \begin{array}{ll} V_{in} = V_{IL} & I_{out} \leq 3.6 \text{ mA} \\ I_{out} \leq 6.0 \text{ mA} \\ I_{out} \leq 7.8 \text{ mA} \end{array}$	3.0 4.5 6.0	0.26 0.26 0.26	0.33 0.33 0.33	0.40 0.40 0.40	
I _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	±[0.1	± <u>∏</u> 1.0	±[1.0	μΑ
I _{OZ}	Maximum Three–State Leakage Current	Output in High-Impedance State $V_{in} = V_{IL}$ or V_{IH} $V_{out} = V_{CC}$ or GND	6.0	±[0.5	±[ō.0	± <u>1</u> 10	μΑ
I _{CC}	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$	6.0	4	40	160	μΑ

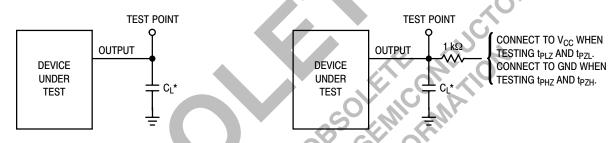
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

			Guaranteed Limit			
Symbol	Parameter	V _{CC} V	– 55 to 25°C	≤ 85 °C	≤ 125°C	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input A to Output Y (Figures 1 and 3)	2.0 3.0 4.5 6.0	120 60 24 20	150 75 30 26	180 90 36 31	ns
t _{PLZ} , t _{PHZ}	Maximum Propagation Delay, Output Enable to Output Y (Figures 2 and 4)	2.0 3.0 4.5 6.0	175 90 35 30	220 110 44 37	265 135 53 45	ns
t _{PZL} , t _{PZH}	Maximum Propagation Delay, Output Enable to Output Y (Figures 2 and 4)	2.0 3.0 4.5 6.0	190 95 38 32	240 120 48 21	285 150 57 48	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 1 and 3)	2.0 3.0 4.5 6.0	60 22 12 10	75 28 15 13	90 34 18 15	ns
C _{in}	Maximum Input Capacitance	_	10	10	10	pF
C _{out}	Maximum Three-State Output Capacitance (Output in High-Impedance State)	_	15	15	15	pF


NOTES:

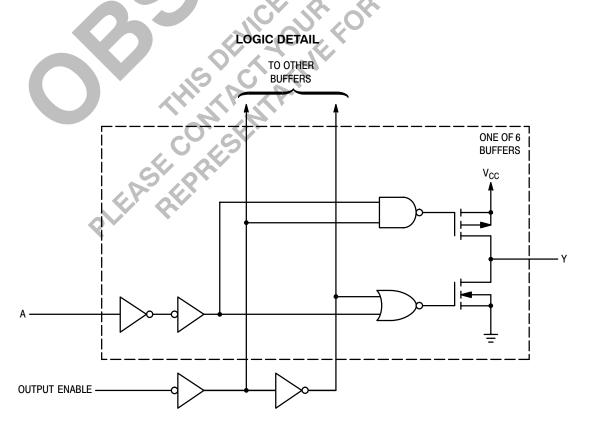
- 1. For propagation delays with loads other than 50 pF, see Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).
- 2. Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).


		Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance (Per Buffer)*	60	pF

^{*} Used to determine the no-load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$. For load considerations, see Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

SWITCHING WAVEFORMS

TEST CIRCUITS



^{*}Includes all probe and jig capacitance

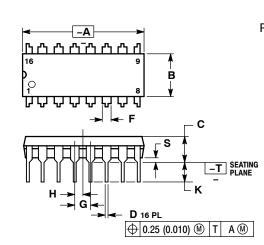
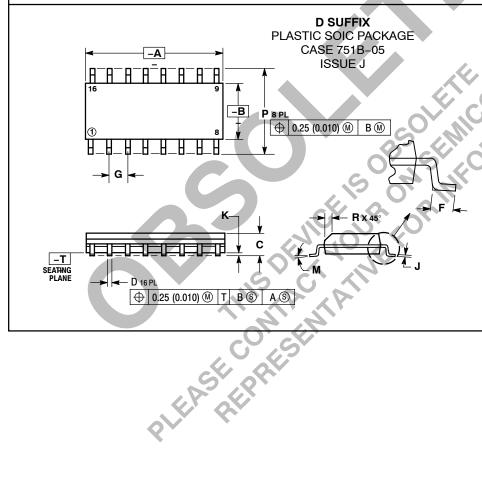

*Includes all probe and jig capacitance

Figure 3.

Figure 4.

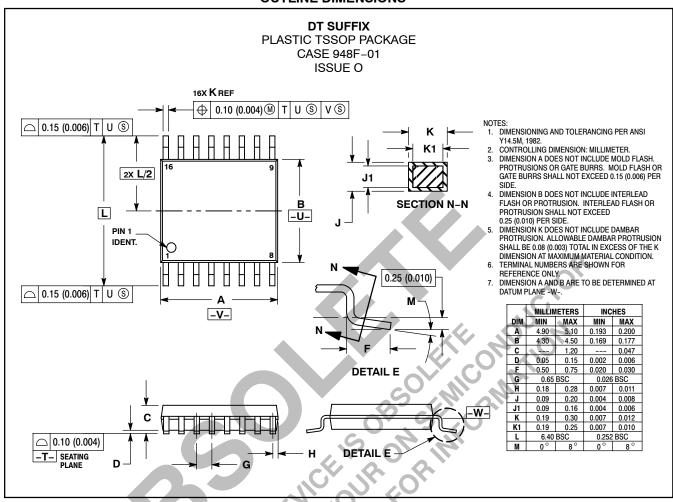
OUTLINE DIMENSIONS



N SUFFIX PLASTIC PACKAGE CASE 648-08 **ISSUE R**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEADS WHEN
 FORMED PARALLEL.
 DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 ROUNDED CORNERS OPTIONAL.


	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.740	0.770	18.80	19.55
В	0.250	0.270	6.35	6.85
С	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.070	1.02	1.77
G	0.	100 BSC	2	.54 BSC
Н	0.	050 BSC	1	.27 BSC
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
M	0°	10°	0°	10°
S	0.020	0.040	0.51	1 01

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION, ALLOWABLE DAMBAR
- PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27 BSC		0.050	BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

OUTLINE DIMENSIONS

ON Semiconductor and the registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of fits products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically discibility including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative