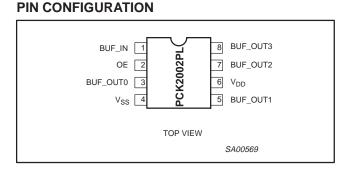

INTEGRATED CIRCUITS

Product data

2001 Jun 12

Philips Semiconductors


PCK2002PL

FEATURES

- General purpose and PCI-X 1:4 clock buffer
- 8-pin TSSOP 3 × 4.4 mm package
- Same form, fit, and function as CDCV304
- See PCK2001 for 48-pin 1:18 buffer part
- See PCK2001M for 28-pin 1:10 buffer part
- See PCK2001R for 16-pin 1:6 buffer part
- Operating frequency: 0 140 MHz
- Part-to-part skew < 500 ps
- Low output skew: <200 ps
- 3.3 V operation
- ESD classification testing is done to JEDEC Standard JESD22. Protection exceeds 2000 V to HBM per method A114.

DESCRIPTION

The PCK2002PL is a 1–4 fanout buffer used as a high-performance, low skew, general purpose and PCI-X clock buffer. It distributes one input clock (BUF_IN) signal to four output clocks (BUF_OUT_n).

PIN DESCRIPTION

PIN NUMBER	I/O TYPE	SYMBOL	FUNCTION
1	Input	BUF_IN	Buffered clock input
3, 5, 7, 8	Output	BUF_OUT (0-3)	Buffered clock outputs
6	Input	V _{DD}	3.3 V supply
2	Input	OE	Output Enable
4	Input	V _{SS}	Ground

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PLH} t _{PHL}	Propagation delay BUF_IN to BUF_OUT _n	V _{CC} = 3.3 V, C _L = 25 pF	2.9 2.8	ns
tr	Rise time	V_{CC} = 3.3 V, C_L = 10 pF, 0.2V_{DD} to 0.6V_{DD}	450	ps
t _f	Fall time	V_{CC} = 3.3 V, C_L = 10 pF, 0.6V_{DD} to 0.2V_{DD}	400	ps
I _{CC}	Total supply current	$V_{CC} = 3.6 V$	50	μΑ

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE	DRAWING NUMBER	
8-Pin Plastic TSSOP	–40 to +85 °C	PCK2002PLDP	SOT530-1	

PCK2002PL

FUNCTION TABLE

OE	BUF_IN	BUF_OUTn
L	Х	L
Н	L	L
Н	Н	Н

ABSOLUTE MAXIMUM RATINGS^{1, 2}

In accordance with the Absolute Maximum Rating System (IEC 134). Voltages are referenced to V_{SS} ($V_{SS} = 0$ V).

SYMBOL	DADAMETED	CONDITION	LIN	UNIT		
STMBOL	PARAMETER	CONDITION	MIN	MAX		
V _{DD}	DC 3.3 V supply voltage		-0.5	+4.3	V	
I _{IK}	DC input diode current	V ₁ < 0	—	-50	mA	
VI	DC input voltage	Note 2	-0.5	V _{DD} + 0.5	V	
I _{OK}	DC output diode current	$V_{O} > V_{DD} \text{ or } V_{O} < 0$	—	±50	mA	
Vo	DC output voltage	Note 2	-0.5	V _{DD} + 0.5	V	
Ι _Ο	DC output source or sink current	$V_{O} \ge 0$ to V_{DD}	—	±50	mA	
T _{stg}	Storage temperature range		-65	+150	°C	
P _{tot}	Power dissipation per package plastic medium-shrink SO (SSOP)	For temperature range: 0 to +70 °C above +55 °C derate linearly with 11.3 mW/K	_	850	mW	

NOTES:

 Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMPOL	PARAMETER	CONDITIONS	LIM	UNIT	
SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
V _{DD}	DC 3.3V supply voltage		3.0	3.6	V
CL	Capacitive load		20	30	pF
VI	DC input voltage range		0	V _{DD}	V
Vo	DC output voltage range		0	V _{DD}	V
T _{amb}	Operating ambient temperature range in free air		-40	+85	°C

PCK2002PL

DC CHARACTERISTICS

		TEST CONDITIONS			LIMITS T _{amb} = -40 to +85 °C		UNIT
SYMBOL	PARAMETER						
		V _{DD} (V)	OTHER		MIN	MAX	
V _{IH}	HIGH level input voltage	3.0 to 3.6	—	_	2.0	V _{DD} + 0.3	V
V _{IL}	LOW level input voltage	3.0 to 3.6	—	—	$V_{SS} - 0.3$	0.8	V
		3.0 to 3.6	I _{OH} = -1 mA	—	V _{DD} – 0.2	—	V
V _{OH}	V _{OH} Output HIGH voltage	3.0	I _{OH} = -24 mA	—	2.0	—	V
		3.0	I _{OH} = -12 mA	—	2.4	—	V
		3.0 to 3.6	I _{OL} = 1 mA	_	_	0.2	V
V _{OL}	Output LOW voltage	3.0	I _{OL} = 24 mA	_	_	0.8	V
		3.0	I _{OL} = 12 mA	—	—	0.55	V
		3.0	V _{OUT} = 1 V	_	-50	_	mA
ЮН	Output HIGH current	3.3	V _{OUT} = 1.65 V	—	_	-150	mA
		3.0	V _{OUT} = 2.0 V	_	60	_	mA
IOL	Output LOW current	3.3	V _{OUT} = 1.65 V	—	_	150	mA
±II	Input leakage current	3.6	$V_{I} = V_{DD}$ or GND	—	_	±5	μA
I _{CC}	Quiescent supply current	3.6	$V_{I} = V_{DD}$ or GND	I _O = 0	_	100	μA

PCK2002PL

AC CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDIT	TEST CONDITIONS		LIMITS T _{amb} = -40 to +85 °C		
			NOTES	MIN	TYP ⁶	MAX	
Т _Н	CLK HIGH time	66 MHz	2	6.0	—	—	ns
ΤL	CLK LOW time		3	6.0	—	—	ns
Т _Н	CLK HIGH time	140 MHz	2	2.9	—	—	ns
ΤL	CLK LOW time	140 MHZ	3	3.0	—	—	ns
T _R	Output rise slew rate		4	2.15	3.3	4.1	V/ns
T _F	Output fall slew rate		4	2.5	3.3	4.4	V/ns
T _{PLH}	Buffer LH propagation delay		5	1.8	2.9	3.4	ns
T _{PHL}	Buffer HL propagation delay		5	1.8	2.8	3.4	ns
T _{SKW}	Bus CLK skew		1	_	—	200	ps
T _{DDSKW}	Device to device skew		1	_	—	500	ps

NOTES:

1. CLK skew is only valid for equal loading of all outputs.

2. T_H is measured at 0.5 V_{DD} as shown in Figure 2. 3. T_L is measured at 0.35 V_{DD} as shown in Figure 2.

4. T_R and T_F are measured as a transition through the threshold region 0.2 V_{DD} to 0.6 V_{DD} and 0.6 V_{DD} to 0.2 V_{DD}. 5. Input edge rate for these tests must be faster than 1 V/ns.

6. All typical values are at $V_{CC} = 3.3$ V and $T_{amb} = 25$ °C.

AC WAVEFORMS

 $V_M = 50\% V_{DD}$

 $C_{L}^{...} = 10 \text{ pF}$

 $\bar{V_{OL}}$ and \bar{V}_{OH} are the typical output voltage drop that occur with the output load.

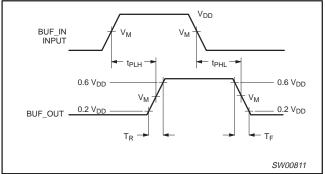


Figure 1. Load circuitry for switching times.

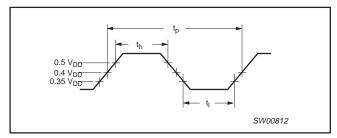


Figure 2. Buffer Output clock

TEST CIRCUIT

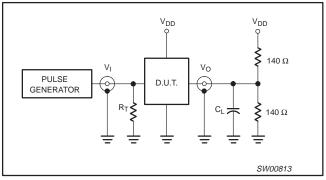
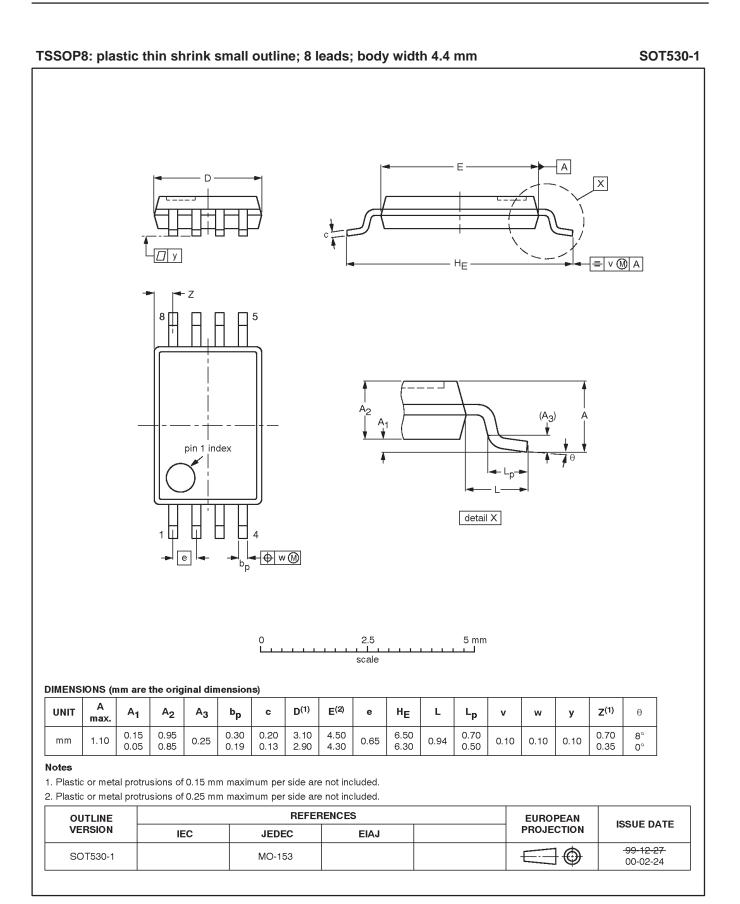



Figure 3. Load circuitry for switching times

PCK2002PL

Product data

PCK2002PL

NOTES

PCK2002PL

Data sheet status

Data sheet status ^[1]	Product status ^[2]	Definitions
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088-3409 Telephone 800-234-7381

© Copyright Philips Electronics North America Corporation 2001 All rights reserved. Printed in U.S.A.

Date of release: 06-01

Document order number:

9397 750 08472

Let's make things better.

