

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

HI-300 thru HI-307

August 1997

Features

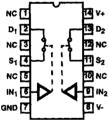
CMOS Analog Switches

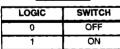
- TTL, CMOS Compatible
- Symmetrical Switch Elements
- Low Operating Power (Typ for HI-300 303) . . . 1.0mW

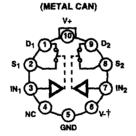
Applications

- · Sample and Hold (i.e., Low Leakage Switching)
- . Op Amp Gain Switching (i.e., Low On Resistance)
- · Portable, Battery Operated Circuits
- . Low Level Switching Circuits
- · Dual or Single Supply Systems

Description

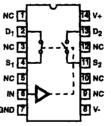

The HI-300 thru HI-307 series of switches are monolithic devices fabricated using CMOS technology and the Harris dielectric isolation process. These switches feature break-before-make switching, (HI-301, HI-303, HI-305 and HI-307 only), low and nearly constant ON resistance over the full analog signal range, and low power dissipation, (a few mW for the HI-300 thru HI-303, a few hundred mW for the HI-304 thru HI-307).

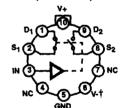

The HI-300 thru HI-303 are TTL compatible and have a logic "0" condition with an input less than 0.8V and a logic "1" condition with an input greater than 4V. The HI-304 thru HI-307 switches are CMOS compatible and have a low state with an input less than 3.5V and a high state with an input greater than 11V. (See pinouts for switch conditions with a logic "1" input.)


Pinouts (Switch States are for a Logic "1" Input)

DUAL SPST HI-300 AND HI-304 TOP VIEWS

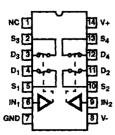
(CERDIP, PDIP, SOIC)



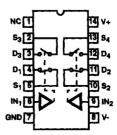

† The substrate and case are internally tied to V-. (The case should not be used as the V-connection, however.)

SPST HI-301 AND HI-305 TOP VIEWS

(CERDIP, PDIP, SOIC)


LOGIC	SW1	SW2
0	OFF	ON
1	ON	OFF

(METAL CAN)

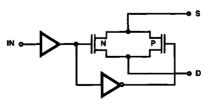

† The substrate and case are internally tied to V-. (The case should not be used as the Vconnection, however.)

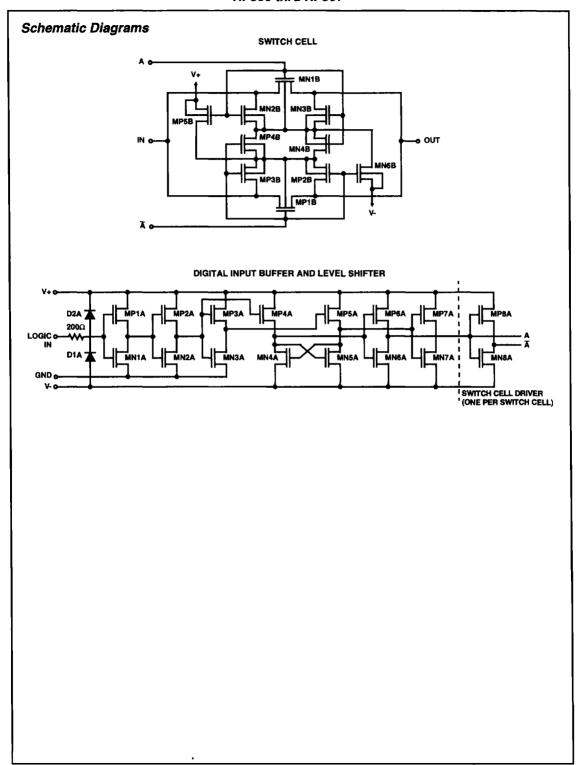
DUAL DPST HI-302 AND HI-306 (PDIP, CERDIP, SOIC) TOP VIEW

LOGIC	SWITCH
0	OFF
1	ON

DUAL SPDT HI-303 AND HI-307 (PDIP, CERDIP, SOIC) TOP VIEW

LOGIC	SW1 SW2	SW3 SW4
0	OFF	ON
1	ON	OFF


Ordering Information


PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. NO.		
HI1-0300-2	-55 to 125	14 Ld CERDIP	F14.3		
HI1-0300-5	0 to 75	14 Ld CERDIP	F14.3		
HI2-0300-2	-55 to 125	10 Pin Metal Can (TO-100)	T10.B		
HI2-0300-5	0 to 75	10 Pin Metal Can (TO-100)	T10.B		
HI3-0300-5	0 to 75	14 Ld PDIP	E14.3		
HI1-0301-2	-55 to 125	14 Ld CERDIP	F14.3		
HI1-0301-5	0 to 75	14 Ld CERDIP	F14.3		
HI2-0301-2	-55 to 125	10 Pin Metal Can (TO-100)	T10.B		
HI2-0301-5	0 to 75	10 Pin Metal Can (TO-100)	T10.B		
HI3-0301-5	0 to 75	14 Ld PDIP E14.5			
HI9P0301-5	0 to 75	14 Ld SOIC M14			
HI1-0302-2	-55 to 125	14 Ld CERDIP	F14.3		
HI1-0302-5	0 to 75	14 Ld CERDIP	F14.3		
HI3-0302-5	0 to 75	14 Ld PDIP	E14.3		
HI9P0302-5	0 to 75	14 Ld SOIC	M14.15		
HI1-0303-2	-55 to 125	14 Ld CERDIP F14.3			
HI1-0303-5	0 to 75	14 Ld CERDIP	F14.3		
HI3-0303-5	0 to 75	14 Ld PDIP	E14.3		
HI9P0303-5	0 to 75	14 Ld SOIC	M14.15		

PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. NO.
HI9P0303-9	-40 to 85	14 Ld SOIC	M14.15
HI1-0304-2	-55 to 125	14 Ld CERDIP	F14.3
HI1-0304-5	0 to 75	14 Ld CERDIP	F14.3
HI2-0304-2	-55 to 125	10 Pin Metal Can (TO-100)	T10.B
HI2-0304-5	0 to 75	10 Pin Metal Can (TO-100)	T10.B
HI3-0304-5	0 to 75	14 Ld PDIP	E14.3
HI1-0305-2	-55 to 125	14 Ld CERDIP	F14.3
HI1-0305-5	0 to 75	14 Ld CERDIP	F14.3
HI2-0305-2	-55 to 125	10 Pin Metal Can (TO-100)	T10.B
HI2-0305-5	0 to 75	10 Pin Metal Can (TO-100)	T10.B
HI3-0305-5	0 to 75	14 Ld PDIP	E14.3
HI9P0305-5	0 to 75	14 Ld SOIC	M14.15
HI1-0306-5	0 to 75	14 Ld CERDIP	F14.3
HI3-0306-5	0 to 75	14 Ld PDIP	E14.3
HI1-0307-2	-55 to 125	14 Ld CERDIP	F14.3
HI1-0307-5	0 to 75	14 Ld CERDIP	F14.3
HI3-0307-5	0 to 75	14 Ld PDIP	E14.3
HI9P0307-5	0 to 75	14 Ld SOIC	M14.15

Functional Block Diagram

TYPICAL SWITCH HI-300 SERIES

Absolute Maximum Ratings	Thermal Information		
Voltage Between Supplies	Thermal Resistance (Typical, Note 1)	θ _{JA} (°C/W)	θ _{JC} (°C/W)
Digital Input Voltage +Vsupply +4V	CERDIP Package	95	40
-V _{SUPPLY} -4V	PDIP Package	100	N/A
Analog Input Voltage+VSUPPLY +1.5V	SOIC Package	120	N/A
-V _{SUPPLY} -1.5V	10 Pin TO-100 Metal Can Package	160	75
Typical Derating Factor 1.5mA/MHz Increase in ICCOP	Maximum Junction Temperature		
ESD Classification	CERDIP, TO-Can Packages		175°C
Operating Conditions	PDIP, SOIC Packages		
Temperature Range	Maximum Lead Temperature (Soldering 1		_
HI-3XX-255°C to 125°C	(SOIC - Lead Tips Only)	,	
HI-3XX-50°C to 75°C	,		

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

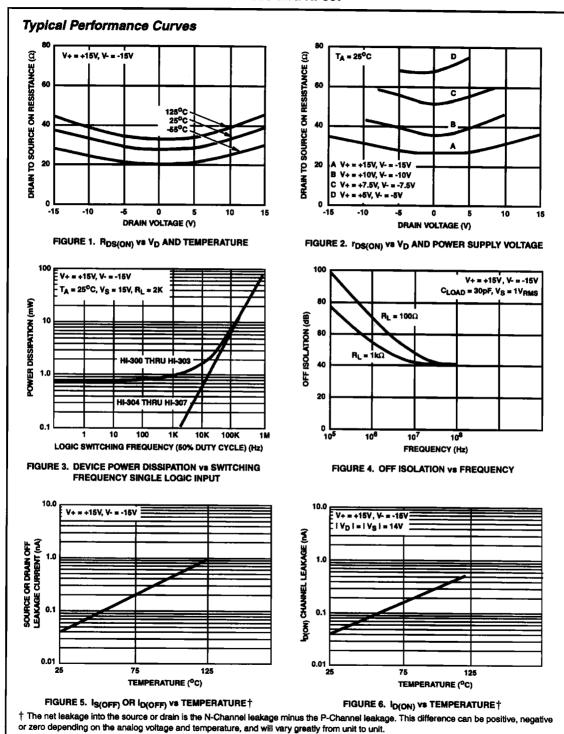
NOTE:

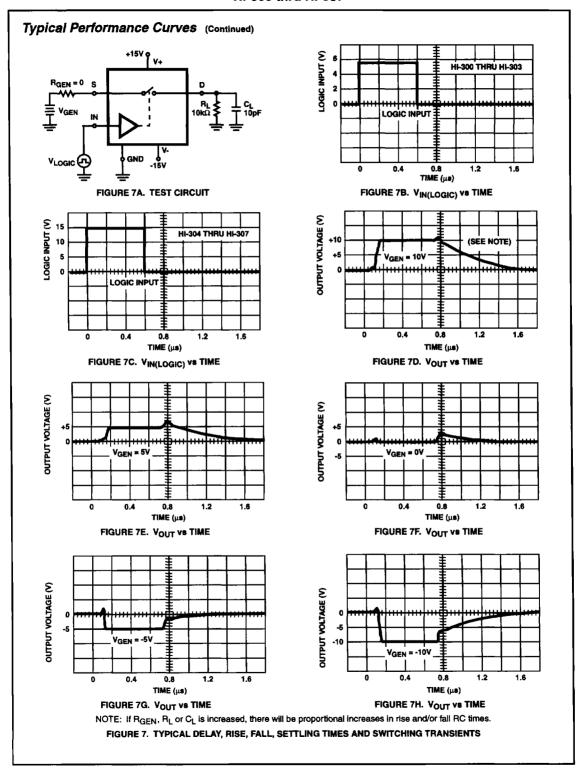
1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications Supplies = +15V, -15V; V_{IN} = Logic Input. Hi-300-303; V_{IN} - for Logic "1" = 4V, for Logic "0" = 0.8V. Hi-304-307; V_{IN} - for Logic "1" = 11V, for Logic "0" = 3.5V, Unless Otherwise Specified

PARAMETER	TEMP	TEMP -55°C TO 125°C			0°C TO 75°C			
	(°C)	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
SWITCHING CHARACTERISTICS							<u> </u>	
Break-Before-Make Delay, tOPEN (Note 15)	25	-	60	-	-	60	-	ns
Switch On Time, toN (Note 13)	25		210	300	•	210	300	ns
Switch Off Time, t _{OFF} (Note 13)	25	-	160	250	-	160	250	ns
Switch Off Time, toN (Note 14)	25	-	160	250		160	250	ns
Switch Off Time, toFF (Note 14)	25	-	100	150	-	100	150	ns
"Off Isolation" (Note 6)	25	-	60	-	-	60	•	dB
Charge Injection (Note 7)	25	•	3	-	-	3	-	m∨
Input Switch Capacitance, C _{S(OFF)}	25	-	16		· -	16		ρF
Output Switch Capacitance, CD(OFF)	25		14	-	-	14		pF
Output Switch Capacitance, C _{D(ON)}	25	•	35	-		35		pF
(High) Digital Input Capacitance, CIN	25	-	5	-	-	5	-	рF
(Low) Digital Input Capacitance, CIN	25		5	-		5	-	pF
DIGITAL INPUT CHARACTERISTICS								
Input Low Level, V _{INL} (Note 13)	Full	T -	-	0.8		-	0.8	٧
Input High Level, V _{INH} (Note 13)	Full	4		-	4	-	-	٧
Input Low Level, V _{INL} (Note 14)	Full	-	-	3.5	-	-	3.5	٧
Input High Level, V _{INH} (Note 14)	Full	11	-	-	11	-	-	٧
Input Leakage Current (Low), I _{INL} (Note 5)	Full	-	-	1	-	-	1	μА
Input Leakage Current (High), I _{INH} (Note 5)	Full	-	-	1	-	-	. 1	μА
ANALOG SWITCH CHARACTERISTICS								
Analog Signal Range	Full	-15		+15	-15	-	+15	٧
On Resistance, r _{ON} (Note 2)	25	-	35	50	-	35	50	Ω
	Full	-	40	75	-	40	75	Ω
Off Input Leakage Current, I _{S(OFF)} (Note 3)	25		0.04	1	-	0.04	5	nΑ
	Full	T -	1	100	-	0.2	100	nA

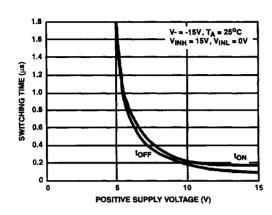
HI-300 thru HI-307


Electrical Specifications


Supplies = +15V, -15V; V_{IN} = Logic Input. HI-300-303: V_{IN} - for Logic "1" = 4V, for Logic "0" = 0.8V. HI-304-307: V_{IN} - for Logic "1" = 11V, for Logic "0" = 3.5V, Unless Otherwise Specified (Continued)

	TEMP	-55°C TO 125°C			0°C TO 75°C			
PARAMETER	(°C)	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Off Output Leakage Current, ID(OFF) (Note 3)	25	-	0.04	1	-	0.04	5	nA
	Full	-	1	100	-	0.2	100	nA
On Leakage Current, I _{D(ON)} (Note 4)	25	-	0.03	1	-	0.03	5	nA
	Full		0.5	100	•	0.2	100	nA
POWER SUPPLY CHARACTERISTICS								
Current, I+ (Notes 8, 13)	25		0.09	0.5	-	0.09	0.5	mA
	Full	-	-	1	-	-	1	mA
Current, I- (Notes 8, 13)	25	I	0.01	10	-	0.01	100	μА
	Full	-	-	100	-	-	-	μA
Current, I+ (Notes 9, 13)	25	-	0.01	10	-	0.01	100	μА
	Full	-		100	-		-	μΑ
Current, I- (Notes 9, 13)	25	•	0.01	10	-	0.01	100	μА
	Full		-	100	-	T -		μА
Current, I+ (Notes 10, 14)	25	-	0.01	10	-	0.01	100	μА
	Full	Ī	·	100	-	-		μА
Current, I- (Notes 10, 14)	25	•	0.01	10	-	0.01	100	μА
	Full		-	100	-	-	-	μА
Current, I+ (Notes 11, 14)	25	-	0.01	10	-	0.01	100	μА
	Full	-	-	100	-		-	μА
Current, I- (Notes 11, 14)	25	-	0.01	10	-	0.01	100	μА
	Full	1	-	100		-	-	μА

NOTES:


- As with all semiconductors, stresses listed under "Absolute Maximum Ratings" may be applied to devices (one at a time) without resulting
 in permanent damage. This is a stress rating only. Exposure to absolute maximum rating conditions for extended periods may affect
 device reliability. The conditions listed under "Electrical Specifications" are the only conditions recommended for satisfactory operation.
- 2. V_S = ±10V, I_{OUT} = ∓10mA. On resistance derived from the voltage measured across the switch under the above conditions.
- 3. $V_S = \pm 14V$, $V_D = \mp 14V$.
- 4. $V_S = V_D = \pm 14V$.
- 5. The digital inputs are diode protected MOS gates and typical leakages of 1nA or less can be expected.
- 6. $V_S = 1V_{RMS}$, f = 500kHz, $C_i = 15pF$, $R_i = 1K$.
- V_S = 0V, C_L = 10,000pF, Logic Drive = 5V pulse. (HI-300 303) Switches are symmetrical; S and D may be interchanged. Logic Drive = 15V (HI-304 - 307).
- 8. $V_{IN} = 4V$ (one input) (all other inputs = 0V).
- 9. V_{IN} = 0.8V (all inputs).
- 10. V_{IN} = 15V (all inputs).
- 11. VIN = 0V (all inputs).
- 12. To drive from DTL/TTL circuits, pullup resistors to +5V supply are recommended.
- 13. HI-300 thru HI-303 only.
- 14. HI-304 thru HI-307 only.
- 15. HI-301, HI-303, HI-305, HI-307 only.

Typical Performance Curves (Continued)

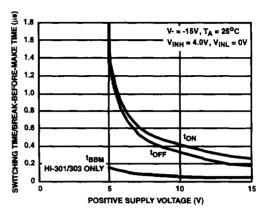
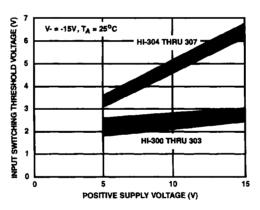
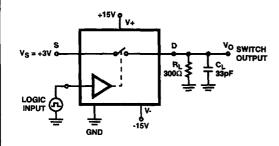
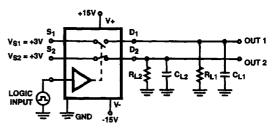
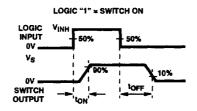


FIGURE 14. SWITCHING TIME va POSITIVE SUPPLY VOLTAGE, HI-304 THRU HI-307

FIGURE 15. SWITCHING TIME AND BREAK-BEFORE-MAKE TIME vs POSITIVE SUPPLY VOLTAGE, HI-300 THRU HI-303


FIGURE 16. INPUT SWITCHING THRESHOLD VS POSITIVE SUPPLY VOLTAGE, HI-300 THRU HI-307


Test Circuits and Waveforms

SWITCH TYPE	V _{INH}
HI-300 thru HI-303	4V
HI-304 thru HI-307	15V

SWITCH TYPE	VINH
HI-301, HI-303	5V
HI-305, HI-307	15V

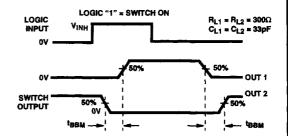


FIGURE 18. BREAK-BEFORE-MAKE TEST CIRCUIT (tBBM