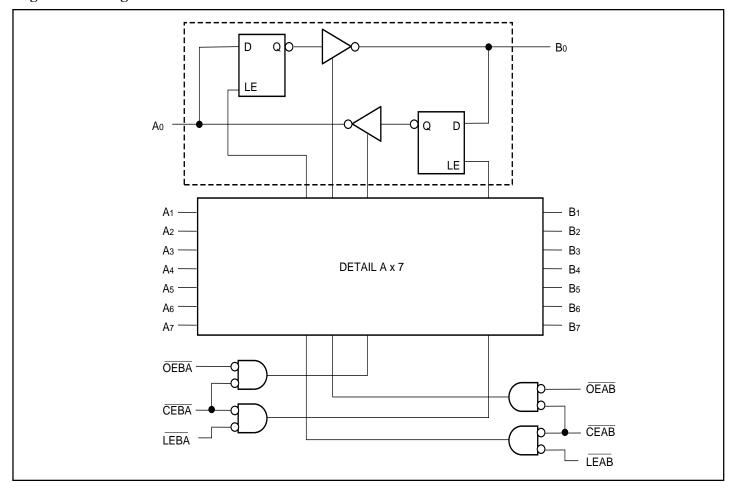


Fast CMOS 3.3V 8-Bit Latched Transceiver

Product Features

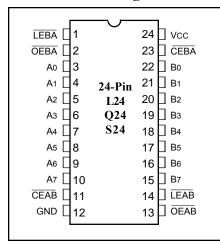
- Functionally compatible with FCT3, LVT, and 74 series 543 families of products
- Tri-State outputs
- 5V Tolerant inputs and outputs
- 2.0V-3.6V Vcc supply operation
- Balanced sink and source output drives (24 mA)
- Low ground bounce outputs
- Power Down High Impedance inputs and outputs
- Supports live insertion
- ESD Protection exceeds 2000V, Human Body Model 200V, Machine Model
- Packages available:
 - -24-pin 173-mil wide plastic TSSOP(L)
 - -24-pin 150-mil wide plastic QSOP (Q)
 - -24-pin 300-mil wide plastic SOIC (S)


Product Description

Pericom Semiconductor's PI74LCX series of logic circuits are produced using the Company's advanced 0.6 micron CMOS technology, achieving industry leading speed grades.

The PI74LCX543 is an 8-bit wide non-inverting transceiver designed with two sets of eight D-type latches with separate input and output controls for each set. For data flow from A to B, for example, the A-to-B Enable (\overline{CEAB}) input must be LOW in order to enter data from A0-A7 or to take data from B0-B7, as indicated in the Truth Table. With CEAB LOW, a LOW signal makes the A-to-B latches transparent; a subsequent LOW-to-HIGH transition of the LEAB signal puts the A latches in the storage mode and their outputs no longer change with the A inputs. With CEAB and OEAB both LOW, the 3-state B output buffers are active and reflect the data present at the output of the A latches. Control of data from B to A is similar, but uses the CEAB, LEAB, and OEAB inputs.

The PI74LCX543 can be driven from either 3.3V or 5.0V devices allowing this device to be used as a translator in a mixed 3.3/5.0V system.


Logic Block Diagram

1

Product Pin Configuration

Product Pin Description

Pin Name	Description
OEAB	A-to-B Output Enable Input (Active LOW)
ŌĒBĀ	B-to-A Output Enable Input (Active LOW)
CEAB	A-to-B Enable Input (Active LOW)
CEBA	B-to-A Enable Input (Active LOW)
LEAB	A-to-B Latch Enable Input (Active LOW)
LEBA	B-to-A Latch Enable Input (Active LOW)
A0-A7	A-to-B Data Inputs or B-to-A 3-State Outputs
B0-B7	B-to-A Data Inputs or A-to-B 3-State Outputs
GND	Ground
Vcc	Power

Truth Table (Non-Inverting)^(1,2) For A-to-B (Symmetric with B-to-A)

	Inputs		Latch Status	Output Buffers
CEAB	LEAB	OEAB	A-to-B	B0-B7
Н	X	X	Storing	High-Z
X	Н	X	Storing	_
X	X	Н	_	High Z
L	L	L	Transparent	Current A Inputs
L	Н	L	Storing	Previous* A Inputs

1. *Before LEAB LOW-to-HIGH Transition

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care or Irrevelant

2. A-to-B data flow shown; B-to-A flow control is the same, except using CEBA, LEBA, and OEBA.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied -40° C to $+85^{\circ}$ C
Supply Voltage to Ground Potential (Inputs & Vcc Only) $-0.5V$ to $+7.0V$
Supply Voltage to Ground Potential (Outputs & D/O Only) $$ $-0.5V$ to $+7.0V$
DC Input Voltage0.5V to +7.0V
DC Output Current 120 mA
Power Dissipation

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operating Conditions

Symbol	Parameter		Min.	Max.	Units
Vcc	Supply Voltage	Operating	2.0	3.6	
		Data Retention	1.5	3.6	
VI	Input Voltage		0	5.5	V
Vo	Output Voltage	HIGH or LOW State	0	Vcc	
		TRI-State	0	5.5	
IOH/IOL	Output Current	$V_{CC} = 3.0V-3.6V$	_	±24	mA
		$V_{CC} = 2.7V$	_	±12	
TA	Free-Air Operating Temperature		-40	+85	°C
$\Delta t/\Delta V$	Input Edge Rate	V = 0.8V-2.0V, $Vcc = 3.0V$	0	10	ns/V

DC Electrical Characteristics (Over the Operating Range, $T_A = -40$ °C to +85°C, $V_{CC} = 2.7$ V to 3.6V)

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ ⁽²⁾	Max.	Units
VIH	Input HIGH Voltage	Guaranteed Logic HIGH Level		2.0	_	_	
VIL	Input LOW Voltage	Guaranteed Logic LOW Lev	vel	_	_	0.8	
Voh	Output HIGH Voltage	Vcc = 2.7-3.6	I _{OH} = -0.1mA	Vcc-0.2	_	_	
		Vcc = 2.7	Iон = −12mA	2.2	_	_	
		Vcc = 3.0	I _{OH} = -18mA	2.4	_	_	
			I _{OH} = -24mA	2.2	_	_	V
Vol	Output LOW Voltage	Vcc = 2.7-3.6	IOL = 0.1 mA	_	_	0.2	
		$V_{CC} = 2.7$	Iol = 12mA	_	_	0.4	
		$V_{CC} = 3.0$	Iol = 16mA	_	_	0.4	
			IoL = 24mA	_	_	0.55	
Vik	Clamp Diode Voltage	Vcc = Min., I _{IN} = -18mA		_	-0.7	-1.2	
Iı	Input Leakage Current	$0 \le V_I \le 5.5V$	Vcc = 2.7-3.6	_	_	±5	
Ioz	Tri-State Output Leakage	$0 \le V_O \le 5.5V$ $V_I = V_{IH} \text{ or } V_{IL}$	Vcc = 2.7-3.6	_	_	±5	
Ioff	Power Down Disable	$V_{CC} = 0V$, V_{IN} or $V_{OUT} \le 5.5V$		_	_	10	
Icc	Quiescent Power Supply Current	Vcc = Max.	V _{IN} = GND or V _{CC}	_	0.1	10	μА
ΔΙσο	Quiescent Power Supply Current TTL Inputs HIGH	Vcc = Max.	$V_{IN} = V_{CC} - 0.6V^{(3)}$	_	_	500	

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type. 2. Typical values are at $V_{CC} = 3.3V$, $+25^{\circ}C$ ambient.
- 3. Per TTL driven input; all other inputs at Vcc or GND.

Capacitance

Parameters	Description	Test Conditions	Тур.	Units
Cin	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	
Соит	Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
СРД	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , $F = 10$ MHz	25	

4

Switching Characteristics over Operating Range

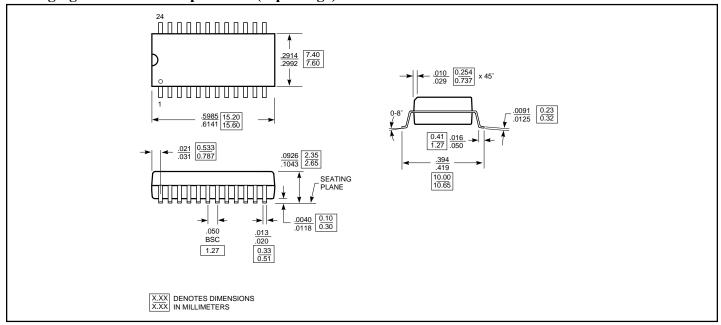
			$V_{CC} = 3$	$.3V \pm 0.3V$	Vcc	= 2.7V	
Parameters	Description	Conditions	Min.	Max.	Min.	Max.	Units
tplh .	Propagation Delay Transparent	$C_L = 50 \text{ pF}$	1.5	7.0	1.5	8.0	
t PHL	Mode An to Bn or Bn to An	$R_L = 500\Omega$					_
t PLH	Propagation Delay		1.5	8.5	1.5	9.5	
t PHL	LEBA to An, LEAB to Bn						
tpzh	Output Enable Time		1.5	9.0	1.5	10.0	
tpzl	OEBA or OEAB to An or Bn						
	CEBA or CEAB to An or Bn						
tpzh	Output Disable Time ⁽³⁾		1.5	7.0	1.5	7.5	ns
tpzl	\overline{OEBA} or \overline{OEAB} to An or Bn						
	$\overline{\text{CEBA}}$ or $\overline{\text{CEAB}}$ to An or Bn						
tsu	Setup Time, HIGH or LOW		2.5		2.5	_	1
	An or Bn to $\overline{\text{LEBA}}$ or $\overline{\text{LEAB}}$						
tн	Hold Time, HIGH or LOW		1.5	_	1.5		
	An or Bn to $\overline{\text{LEBA}}$ or $\overline{\text{LEAB}}$						
tw	LEBA or LEAB Pulse Width LOW(3)		3.3	_	3.3	_]
tsk(o)	Output Skew ⁽¹⁾		_	1.0	_	_	

5

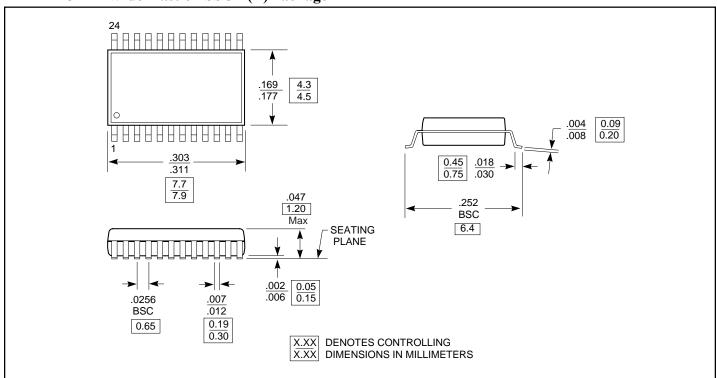
Note:

Dynamic Switching Characteristics (TA = +25°C)

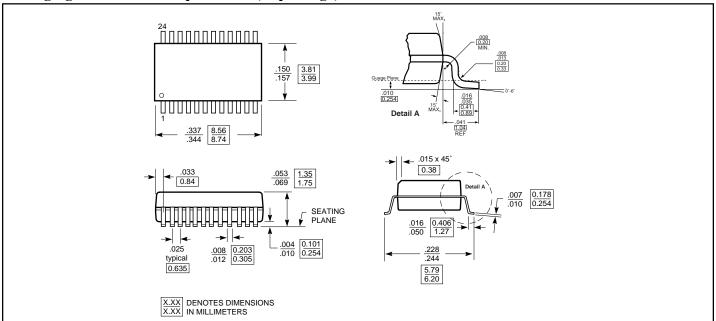
Parameters	Description	Test Conditions(1)	Тур.	Units
Volp	Dynamic LOW Peak Voltage	$V_{CC} = 3.3V, C_L = 50pF$	0.8	V
		$V_{IH} = 3.3V, V_{IL} = 0V$		
Volv	Dynamic LOW Valley Voltage	$V_{CC} = 3.3V, C_L = 50pF$	0.8	V
		$V_{IH} = 3.3V, V_{IL} = 0V$		


Note:

1. Measured with n-1 outputs switching from High-to-Low or Low-to-High. The remaining output is measured in the LOW state.


^{1.} Skew between any two outputs, of the same package, switching in the same direction.

Packaging Mechanical - 24-pin SOIC (S-package)



24-Pin 173 Mil-Wide Plastic TSSOP (L) Package

Packaging Mechanical - 24-pin QSOP (Q-package)

Ordering Information

Ordering Code	Description
PI74LCX543L	24-Pin 173-mil wide Plastic TSSOP (L)
PI74LCX543Q	24-Pin 150-mil wide Plastic QSOP(Q)
PI74LCX543S	24-Pin 300-mil wide Plastic SOIC(S)

Note

1. Thermal characteristics can be found on the web at http://www.pericom.com/packaging/

1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com