TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic # TC74LCX164245FT #### 16-Bit Dual Supply Bus Transceiver The TC74LCX164245FT is a dual supply, advanced high-speed CMOS 16-bit dual supply voltage interface bus transceiver fabricated with silicon gate CMOS technology. Designed for use as an interface between a 5-V bus and a 3.3-V or 2.5-V bus in mixed 5-V/3.3-V or 2.5-V supply systems, it achieves high-speed operation while maintaining the CMOS low power dissipation. It is intended for 2 way asynchronous communication between data busses. The direction of data $tran\underline{sm}$ ission is determined by the level of the DIR input. The enable input (OE) can be used to disable the device so that the buses are effectively isolated. The B-port interfaces with the 5-V bus, the A-port with the 3.3-V or 2.5-V bus. Weight: 0.25 g (typ.) All inputs are equipped with protection circuits against static discharge or transient excess voltage. #### Features (Note) - Bidirectional interface between 5-V and 3.3-V or 2.5-V buses - Wide operating temperature range: Topr = -40 to 125 °C (Note 1) - High-speed: $t_{pd} = 5.8 \text{ ns (max)}$ $$(V_{CCB} = 5.0 \pm 0.5 \text{ V/V}_{CCA} = 3.3 \pm 0.3 \text{ V}, \text{ Ta} = -40 \text{ to } 85^{\circ}\text{C})$$ - Low power dissipation: $ICC = 80 \mu A \text{ (max) (Ta} = -40 \text{ to } 85^{\circ}C)$ - Symmetrical ouput impedance: IOUTA = ±24 mA (min) IOUTB = ±24 mA (min) (V_{CCA} = 3.0 V/V_{CCB} = 4.5 V) - Power-down protection provided on all inputs and outputs - Allows A port and V_{CCA} to float simultaneously when \overline{OE} is "H". - Latch-up performance: -500 mA - · Package: TSSOP Note: Do not apply a signal to any bus pins when it is in the output mode. Damage may result. All floating (high impedance) bus pins must have their input fixed by means of pull-up or pull-down resistors. Note 1: For devices with the ordering part number ending in (*KF. Topr = -40 °C to 85 °C for the other devices. Start of commercial production 2020-01 #### Pin Assignment (top view) #### 10E 48 1DIR 1B1 2 1A1 1B2 3 1A2 GND **GND** 4 1B3 5 1A3 1B4 6 1A4 (5 V) VCCB VCCA (3.3 V) 1B5 1A5 8 1B6 9 1A6 GND 10 GND 39 1B7 11 38 1A7 1B8 12 1A8 37 2B1 13 2A1 2B2 14 2A2 GND 15 **GND** 2B3 16 2A3 33 2B4 17 2A4 (5 V) VCCB 18 VCCA (3.3 V) 2B5 19 2A5 2B6 20 2A6 GND 21 GND 2B7 22 2A7 2B8 23 26 2A8 2DIR 24 2OE 25 ### **IEC Logic Symbol** #### **Truth Table** | Inp | uts | Fun | ction | | |-----------------|------|----------------------------|-------|---------| | 1 OE | 1DIR | Bus Bus
1A1-1A8 1B1-1B8 | | Outputs | | L | L | Output | Input | A = B | | L | Н | Input Output | | B = A | | Н | X | 2 | Z | | | Inp | uts | Fun | ction | | |-----------------|------|----------------|----------------|---------| | 2 OE | 2DIR | Bus
2A1-2A8 | Bus
2B1-2B8 | Outputs | | L | L | Output | Input | A = B | | L | Н | Input Output | | B=A | | Н | Х | Z | | Z | X: Don't care Z: High impedance # **Block Diagram** #### **Absolute Maximum Ratings (Note)** | Characteristics | Symbol | Rating | Unit | | |---|-------------------|--|------|--| | Device complements (Note 4) | Vccв | -0.5 to 7.0 | V | | | Power supply voltage (Note 1) | VCCA | -0.5 to VCCB + 0.5 | V | | | DC input voltage (DIR, $\overline{\text{OE}}$) | VIN | -0.5 to 7.0 | V | | | | | -0.5 to 7.0 (Note 2) | | | | DO hua I/O valtaga | VI/OB | -0.5 to V _{CCB} + 0.5 (Note 3) | V | | | DC bus I/O voltage | | -0.5 to 7.0 (Note 2) | V | | | | VI/OA | -0.5 to V _{CCA} + 0.5
(Note 3) | | | | Input diode current | lıĸ | -50 | mA | | | Output diode current | II/OK | ±50 (Note 4) | mA | | | DC output ourrent | I _{OUTB} | ±50 | mA | | | DC output current | IOUTA | ±50 | mA | | | DC Voo/ground current per supply pin | Іссв | ±100 | mA | | | DC V _{CC} /ground current per supply pin | ICCA | ±100 | IIIA | | | Power dissipation | PD | 400 (Note 5) | mW | | | Storage temperature | T _{stg} | -65 to 150 | °C | | Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even Note: destruction. Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc). - Note 1: Don't supply a voltage to VCCA terminal when VCCB is in the off-state. - Note 2: OFF state - Note 3: High or low state. IOUT absolute maximum rating must be observed. - Note 4: VOUT < GND, VOUT > VCC - Note 5: 400 mW in the range of T_a = -40 to 85. From T_a = 85 to 125 °C a derating factor of -6.25 mW/°C shall be applied until 150 mW. ### **Operating Ranges (Note)** | Characteristics | Symbol | Rating | Unit | | | |--|--------|---------------------|------|--|--| | Dower oupply voltage | VCCB | 4.5 to 5.5 | V | | | | Power supply voltage | VCCA | 2.3 to 3.6 | V | | | | Input voltage (DIR, $\overline{\text{OE}}$) | VIN | 0 to 5.5 | ٧ | | | | | Vivon | 0 to 5.5 (Note 1) | | | | | Due I/O college | VI/OB | 0 to VCCB (Note 2) | V | | | | Bus I/O voltage | Vivo | 0 to 5.5 (Note 1) | V | | | | | VI/OA | 0 to VCCA (Note 2) | | | | | | lourn | ±24 (Note 3) | | | | | Output current | Іоитв | ±24 (Note 4) | mA | | | | | IOUTA | ±8 (Note 5) | | | | | Operating temperature | Topr | -40 to 125 (Note 6) | °C | | | | Input rise and fall time | dt/dv | 0 to 10 (Note 7) | ns/V | | | Note: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND. Please connect both bus inputs and the bus outputs with VCC or GND when the I/O of the bus terminal changes by the function. In this case, please note that the output is not short-circuited. Note 1: OFF state Note 2: High or low state Note 3: VCCB = 4.5 to 5.5 V Note 4: VCCA = 3.0 to 3.6 V Note 5: VCCA = 2.3 to 2.7 V Note 6: For devices with the ordering part number ending in (*KF. Topr = -40 °C to 85 °C for the other devices. Note 7: VINB = 0.8 to 2.0 V, VCCB = 5.0 V VINA = 0.8 to 2.0 V, VCCA = 3.0 V #### **Electrical Characteristics** ### DC Characteristics (Unless otherwise specified, Ta = -40 to 85 °C) | Characteristics | Symbol | Test (| Condition | V _{CCB} (V) | VCCA (V) | Min | Max | Unit | |----------------------------------|-------------------|--|---------------------------|----------------------|---------------|---------------|------|------| | | VIHB | DIR, \overline{OE} , Bn | | 5.0 ± 0.5 | 2.3 to 3.6 | 2.0 | | | | H-level input voltage | Maria | | | 5.0 ± 0.5 | 2.5 ± 0.2 | 1.7 | _ | V | | | VIHA | An | | 5.0 ± 0.5 | 3.3 ± 0.3 | 2.0 | _ | | | | VILB | DIR, \overline{OE} , Bn | | 5.0 ± 0.5 | 2.3 to 3.6 | | 0.8 | | | L-level input voltage | \ / · | Α | | 5.0 ± 0.5 | 2.5 ± 0.2 | | 0.7 | V | | | VILA | An | | 5.0 ± 0.5 | 3.3 ± 0.3 | _ | 0.8 | | | | Vонв | | IOHB = -100 μA | 5.0 ± 0.5 | 2.3 to 3.6 | VCCB
- 0.2 | _ | | | H-level output voltage | | VINA | IOHB = -24 mA | 4.5 | 2.3 to 3.6 | 3.8 | _ | | | | | = VIHA OR VILA VINB = VIHB OR VILB | ΙΟΗΑ = -100 μΑ | 5.0 ± 0.5 | 2.3 to 3.6 | VCCA
- 0.2 | _ | V | | | Vона | VIIID OI VIED | IOHA = -24 mA | 5.0 ± 0.5 | 3.0 | 2.2 | _ | | | | | | IOHA = -8 mA | 5.0 ± 0.5 | 2.3 | 1.8 | _ | | | | Volb | VINA
= VIHA or VILA
VINB
= VIHB or VILB | $I_{OLB} = 100 \mu A$ | 5.0 ± 0.5 | 2.3 to 3.6 | | 0.2 | V | | | | | IOLB = 24 mA | 4.5 | 2.3 to 3.6 | _ | 0.44 | | | L-level output voltage | Vola | | I _{OLA} = 100 μA | 5.0 ± 0.5 | 2.3 to 3.6 | _ | 0.2 | | | | | | I _{OLA} = 24 mA | 5.0 ± 0.5 | 3.0 | _ | 0.55 | | | | | | I _{OLA} = 8 mA | 5.0 ± 0.5 | 2.3 | _ | 0.6 | | | | I _{OZB} | $V_{IN} = V_{IHB}$ or V_{ILB}
$V_{I/OB} = 0$ to 5.5 V | | 5.0 ± 0.5 | 2.3 to 3.6 | _ | ±5.0 | | | 3-state output OFF state current | I _{OZA} | $V_{IN} = V_{IHB}$ or $V_{I/OA} = 0$ to 5.5 | | 5.0 ± 0.5 | 2.3 to 3.6 | _ | ±5.0 | μΑ | | Input leakage current | I _{IN} | V _{IN} (DIR, $\overline{\text{OE}}$) | = 0 to 5.5 V | 5.5 | 3.6 | _ | ±5.0 | μА | | Power-off leakage current | loff | V _{INA} /V _{INB} = 5.5 | V | 0 | 0 | _ | 10 | μΑ | | | I _{CCB1} | $V_{I/OA} = Open, V_{INB} = V_{CCB} or \overline{OE} = V_{CCB}, D$ | GND | 5.5 | Open | | 80 | | | Quiescent supply current | I _{CCB2} | V _{INA} = V _{CCA} or GND
V _{INB} = V _{CCB} or GND | | 5.5 | 3.6 | _ | 80 | μΑ | | | ICCA | VINA = VCCA or | | 5.5 | 3.6 | _ | 50 | | | | Ісств | V _{INB} = 3.4 V pe | r input | 5.5 | 2.3 to 3.6 | | 2.0 | mA | | | Ісста | VINA = VCCA - | 0.6 V per input | 5.0 ± 0.5 | 3.6 | | 500 | μΑ | # DC Characteristics (Note) (Unless otherwise specified, Ta = -40 to 125 °C) | Characteristics | Symbol | Test (| Condition | V _{CCB} (V) | VCCA (V) | Min | Max | Unit | |----------------------------------|-------------------|--|----------------------------|----------------------|---------------|---------------------------|-------|------| | | V _{IHB} | DIR, \overline{OE} , Bn | | 5.0 ± 0.5 | 2.3 to 3.6 | 2.0 | _ | | | H-level input voltage | | | | 5.0 ± 0.5 | 2.5 ± 0.2 | 1.7 | _ | V | | | VIHA | An | | 5.0 ± 0.5 | 3.3 ± 0.3 | 2.0 | _ | | | | VILB | DIR, $\overline{\text{OE}}$, Bn | | 5.0 ± 0.5 | 2.3 to 3.6 | | 0.8 | | | L-level input voltage | \/ | Λ | | 5.0 ± 0.5 | 2.5 ± 0.2 | _ | 0.7 | V | | | VILA | An | | 5.0 ± 0.5 | 3.3 ± 0.3 | _ | 0.8 | | | | Vонв | | I _{OHB} = -100 μA | 5.0 ± 0.5 | 2.3 to 3.6 | VCCB
- 0.2 | | | | | | VINA | I _{OHB} = -24 mA | 4.5 | 2.3 to 3.6 | 3.4 | _ | | | H-level output voltage | | = VIHA or VILA VINB = VIHB or VILB | ΙΟΗΑ = -100 μΑ | 5.0 ± 0.5 | 2.3 to 3.6 | V _{CCA}
- 0.2 | _ | V | | | Vона | - VIND OI VILD | Iона = -24 mA | 5.0 ± 0.5 | 3.0 | 1.9 | _ | | | | | | IOHA = -8 mA | 5.0 ± 0.5 | 2.3 | 1.55 | _ | | | | Volb | VINA
= VIHA OR VILA
VINB
= VIHB OR VILB | IOLB = 100 μA | 5.0 ± 0.5 | 2.3 to 3.6 | _ | 0.2 | V | | | | | I _{OLB} = 24 mA | 4.5 | 2.3 to 3.6 | _ | 0.6 | | | L-level output voltage | Vola | | I _{OLA} = 100 μA | 5.0 ± 0.5 | 2.3 to 3.6 | _ | 0.2 | | | | | | I _{OLA} = 24 mA | 5.0 ± 0.5 | 3.0 | _ | 0.8 | | | | | | IOLA = 8 mA | 5.0 ± 0.5 | 2.3 | _ | 0.9 | | | | I _{OZB} | V _{IN} = V _{IHB} or V _{ILB}
V _{I/OB} = 0 to 5.5 V | | 5.0 ± 0.5 | 2.3 to 3.6 | _ | ±20.0 | | | 3-state output OFF state current | loza | $V_{IN} = V_{IHB}$ or $V_{I/OA} = 0$ to 5.5 | | 5.0 ± 0.5 | 2.3 to 3.6 | _ | ±20.0 | μΑ | | Input leakage current | I _{IN} | V _{IN} (DIR, $\overline{\text{OE}}$) | = 0 to 5.5 V | 5.5 | 3.6 | _ | ±20.0 | μА | | Power-off leakage current | loff | V _{INA} /V _{INB} = 5.5 | 5 V | 0 | 0 | _ | 40 | μА | | | ICCB1 | $V_{I/OA} = Open, V_{INB} = V_{CCB} or OE = V_{CCB}, D$ | GND | 5.5 | Open | _ | 320 | | | Quiescent supply current | I _{CCB2} | V _{INA} = V _{CCA} or V _{INB} = V _{CCB} or | | 5.5 | 3.6 | _ | 320 | μΑ | | | ICCA | V _{INA} = V _{CCA} or V _{INB} = V _{CCB} or | | 5.5 | 3.6 | | 200 | | | | Ісств | V _{INB} = 3.4 V pe | er input | 5.5 | 2.3 to 3.6 | | 2.0 | mA | | | Ісста | VINA = VCCA - | 0.6 V per input | 5.0 ± 0.5 | 3.6 | _ | 5.0 | mA | Note: For devices with the ordering part number ending in (*KF. Topr = -40 $^{\circ}$ C to 85 $^{\circ}$ C for the other devices. #### **AC Characteristics** (Unless otherwise specified, Ta = -40 to 85 °C, input: $t_f = t_f = 2.5$ ns, $R_L = 500 \Omega$) ### $V_{CCA}=3.3\pm0.3~V$ | Characteristics | Symbol | Test Condition | CL (pF) | VCCB (V) | Min | Max | Unit | |---|--|--|---------|-----------|-----|-----|------| | Propagation delay time $(Bn \to An)$ | t _{pLH}
t _{pHL} | | 50 | 5.0 ± 0.5 | 1.0 | 5.8 | | | 3-state output enable time ($\overline{OE} \rightarrow An$) | t _{pZL}
t _{pZH} | Input: Bn
Output: An
(DIR = "L") | 50 | 5.0 ± 0.5 | 1.0 | 9.0 | ns | | 3-state output disable time (OE → An) | t _{pLZ}
t _{pHZ} | (DIK = "L") | 50 | 5.0 ± 0.5 | 1.0 | 9.0 | | | Propagation delay time $(An \to Bn)$ | t _{pLH}
t _{pHL} | | 50 | 5.0 ± 0.5 | 1.0 | 5.8 | | | 3-state output enable time ($\overline{OE} \rightarrow Bn$) | t _{pZL}
t _{pZH} | Input: An Output: Bn (DIR = "H") | 50 | 5.0 ± 0.5 | 1.0 | 8.9 | ns | | 3-state output disable time (OE → Bn) | t _{pLZ}
t _{pHZ} | | 50 | 5.0 ± 0.5 | 1.0 | 9.0 | | | Output to output skew | t _{osLH}
t _{osHL} | (Note1) | 50 | 5.0 ± 0.5 | _ | 1.0 | ns | Note1: Parameter guaranteed by design. (tosLH = |tpLHm - tpLHn|, tosHL = |tpHLm - tpHLn|) #### $V_{CCA}=2.5\pm0.2\;V$ | Characteristics | Symbol | Test Condition | CL (pF) | V _{CCB} (V) | Min | Max | Unit | |--|--|--|----------|----------------------|-----|------|------| | Propagation delay time $(Bn \to An)$ | t _{pLH} | | 30 | 5.0 ± 0.5 | 1.0 | 8.4 | | | 3-state output enable time (OE → An) | t _{pZL}
t _{pZH} | Input: Bn
Output: An
(DIR = "L") | 30 | 5.0 ± 0.5 | 1.0 | 11.0 | ns | | 3-state output disable time (OE → An) | t _{pLZ}
t _{pHZ} | (UIK = "L") | 30 | 5.0 ± 0.5 | 1.0 | 10.0 | | | Propagation delay time $(An \rightarrow Bn)$ | t _{pLH} | | 50 | 5.0 ± 0.5 | 1.0 | 9.0 | | | 3-state output enable time (OE → Bn) | t _{pZL}
t _{pZH} | Input: An Output: Bn (DIR = "H") | 50 | 5.0 ± 0.5 | 1.0 | 10.5 | ns | | 3-state output disable time (OE → Bn) | t _{pLZ}
t _{pHZ} | | 50 | 5.0 ± 0.5 | 1.0 | 10.3 | | | Output to output skew | t _{osLH}
t _{osHL} | (Note1) | 30 or 50 | 5.0 ± 0.5 | l | 1.0 | ns | Note1: Parameter guaranteed by design. (tosLH = |tpLHm - tpLHn|, tosHL = |tpHLm - tpHLn|) #### **AC Characteristics (Note)** (Unless otherwise specified, Ta = -40 to 125 °C, input: $t_r = t_f = 2.5$ ns, $R_L = 500 \Omega$) #### $V_{CCA}=3.3\pm0.3~V$ | Characteristics | Symbol | Test Condition | CL (pF) | VCCB (V) | Min | Max | Unit | |--|--|--|---------|-----------|-----|-----|------| | Propagation delay time $(Bn \to An)$ | t _{pLH}
t _{pHL} | | 50 | 5.0 ± 0.5 | 1.0 | 6.3 | | | 3-state output enable time (OE → An) | t _{pZL}
t _{pZH} | Input: Bn
Output: An
(DIR = "L") | 50 | 5.0 ± 0.5 | 1.0 | 9.7 | ns | | 3-state output disable time (OE → An) | t _{pLZ}
t _{pHZ} | (DIR = "L") | 50 | 5.0 ± 0.5 | 1.0 | 9.7 | | | Propagation delay time $(An \rightarrow Bn)$ | t _{pLH}
t _{pHL} | | 50 | 5.0 ± 0.5 | 1.0 | 6.3 | | | 3-state output enable time (OE → Bn) | t _{pZL}
t _{pZH} | Input: An Output: Bn (DIR = "H") | 50 | 5.0 ± 0.5 | 1.0 | 9.6 | ns | | 3-state output disable time (OE → Bn) | t _{pLZ}
t _{pHZ} | | 50 | 5.0 ± 0.5 | 1.0 | 9.6 | | | Output to output skew | t _{osLH}
t _{osHL} | (Note1) | 50 | 5.0 ± 0.5 | _ | 1.0 | ns | Note: For devices with the ordering part number ending in (*KF. Topr = -40 °C to 85 °C for the other devices. Note1: Parameter guaranteed by design. (tosLH = |tpLHm - tpLHn|, tosHL = |tpHLm - tpHLn|) #### $V_{CCA}=2.5\pm0.2\;V$ | Characteristics | Symbol | Test Condition | CL (pF) | V _{CCB} (V) | Min | Max | Unit | |--|--|----------------------------------|----------|----------------------|-----|------|------| | Propagation delay time $(Bn \rightarrow An)$ | t _{pLH}
t _{pHL} | | 30 | 5.0 ± 0.5 | 1.0 | 9.0 | | | 3-state output enable time (OE → An) | t _p ZL
t _p ZH | Input: Bn Output: An (DIR = "L") | 30 | 5.0 ± 0.5 | 1.0 | 11.8 | ns | | 3-state output disable time (OE → An) | t _{pLZ}
t _{pHZ} | | 30 | 5.0 ± 0.5 | 1.0 | 11.8 | | | Propagation delay time $({\rm An} \rightarrow {\rm Bn})$ | t _{pLH}
t _{pHL} | | 50 | 5.0 ± 0.5 | 1.0 | 9.7 | | | 3-state output enable time (OE → Bn) | t _P ZL
t _P ZH | Input: An Output: Bn (DIR = "H") | 50 | 5.0 ± 0.5 | 1.0 | 11.3 | ns | | 3-state output disable time (OE → Bn) | t _{pLZ}
t _{pHZ} | | 50 | 5.0 ± 0.5 | 1.0 | 11.1 | | | Output to output skew | t _{osLH}
t _{osHL} | (Note1) | 30 or 50 | 5.0 ± 0.5 | 1 | 1.0 | ns | Note: For devices with the ordering part number ending in (*KF. Topr = -40 $^{\circ}$ C to 85 $^{\circ}$ C for the other devices. Note1: Parameter guaranteed by design. (tosLH = |tpLHm - tpLHn|, tosHL = |tpHLm - tpHLn|) # Capacitive Characteristics (Unless otherwise specified, Ta = 25°C) ### $V_{CCB} = 5.0 V$ | Characteristics | Symbol | Test
Circuit | Test Condition | VCCA (V) | Тур. | Unit | |---------------------------------------|------------------|-----------------|-------------------|----------|------|------| | Input capacitance | C _{IN} | _ | DIR, OE | 2.5, 3.3 | 7 | pF | | Output capacitance | C _{I/O} | _ | An, Bn | 2.5, 3.3 | 8 | pF | | | Cont | | A ⇒ B (DIR = "H") | 2.5, 3.3 | 2 | | | Power dissipation capacitance (Note1) | C _{PDA} | | B ⇒ A (DIR = "L") | 2.5, 3.3 | 26 | , r | | | | | A ⇒ B (DIR = "H") | 2.5, 3.3 | 36 | pF | | | C _{PDB} | _ | B ⇒ A (DIR = "L") | 2.5, 3.3 | 4 | | Note1: CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC (opr) = CPD·VCC·fIN + ICC/16 (per bit) ### **Package Dimensions** TSSOP48-P-0061-0.50A Unit: mm Weight: 0.25 g (typ.) #### RESTRICTIONS ON PRODUCT USE Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product". - TOSHIBA reserves the right to make changes to the information in this document and related Product without notice. - This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission. - Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS. - PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our website. - Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part. - Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations. - The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise. - ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT. - Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations. - Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS. ### **TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION** https://toshiba.semicon-storage.com/ Toshiba Electronic Devices & Storage Corporation