
74ACT11657 OCTAL TRANSCEIVER WITH PARITY GENERATOR/CHECKER AND 3-STATE OUTPUTS

AUGUST 1992 - REVISED APRIL 1993

The transmit/receive (T/\overline{R}) input determines the direction of data flow through the bidirectional transceivers. When T/\overline{R} is high, data flows from the A port to the B port (transmit mode); when T/\overline{R} is low, data flows from the B port to the A port (receive mode). When the output-enable (\overline{OE}) input is high, both the A and B ports are in the high-impedance state.

Odd or even parity is selected by a logic high or low level, respectively, on the ODD/EVEN input. PARITY carries the parity bit value; it is an output from the parity generator/checker in the transmit mode and an input to the parity generator/checker in the receive mode.

In the transmit mode, after the A bus is polled to determine the number of high bits, PARITY is set to the logic level that maintains the parity sense selected by the level at the ODD/EVEN input. For example, if ODD/EVEN is low (even parity selected) and there are five high bits on the A bus, then PARITY is set to the logic high level so that an even number of the nine total bits (eight A-bus bits plus parity bit) are high.

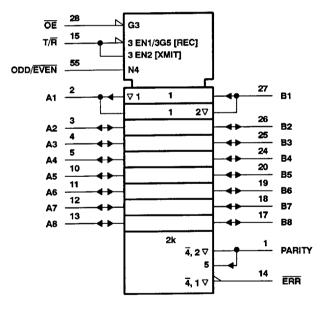
In the receive mode, after the B bus is polled to determine the number of high bits, the $\overline{\text{ERR}}$ output logic level indicates whether or not the data to be received exhibits the correct parity sense. For example, if $\overline{\text{ODD/EVEN}}$ is high (odd parity selected), PARITY is high, and there are three high bits on the B bus, then $\overline{\text{ERR}}$ is low, indicating a parity error.

The 74ACT11657 is characterized for operation from -40°C to 85°C.

generator/checker and is intended for bus-

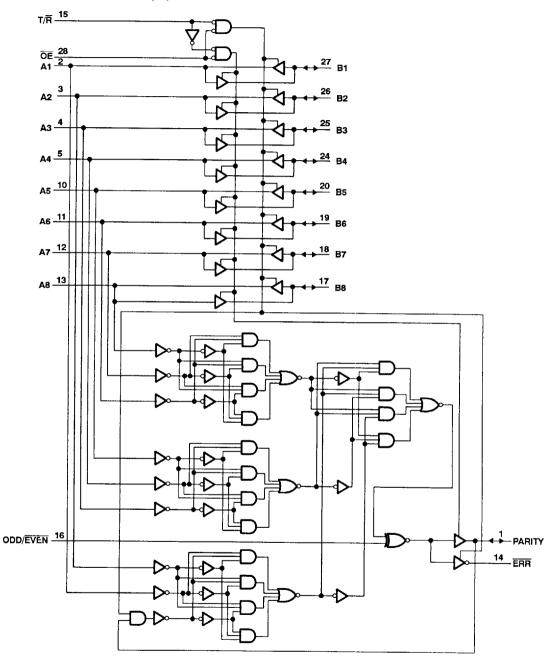
oriented applications.

EPIC is a trademark of Texas Instruments Incorporated.

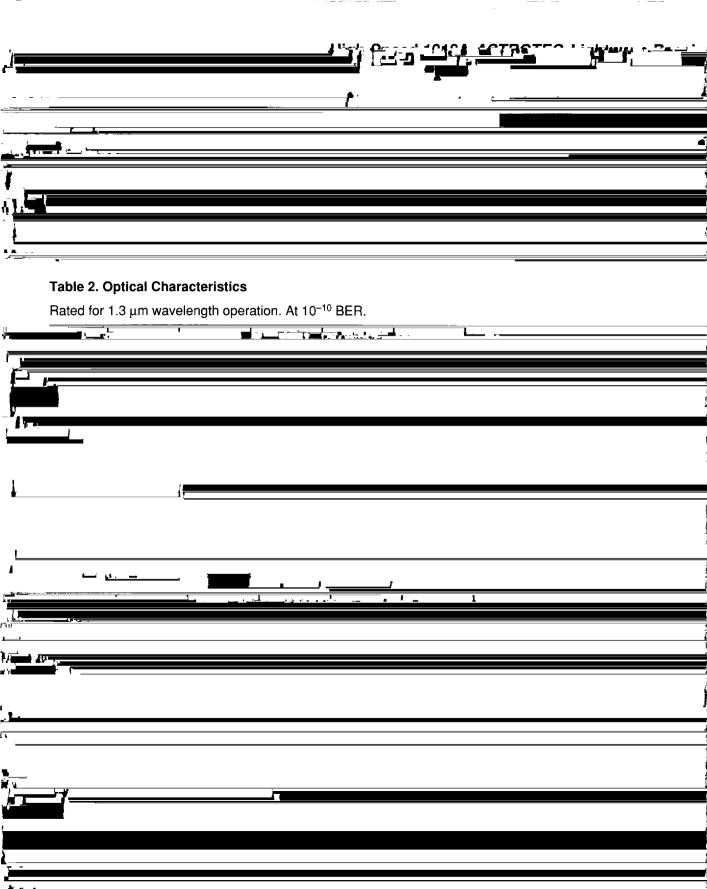

Texas V Instruments

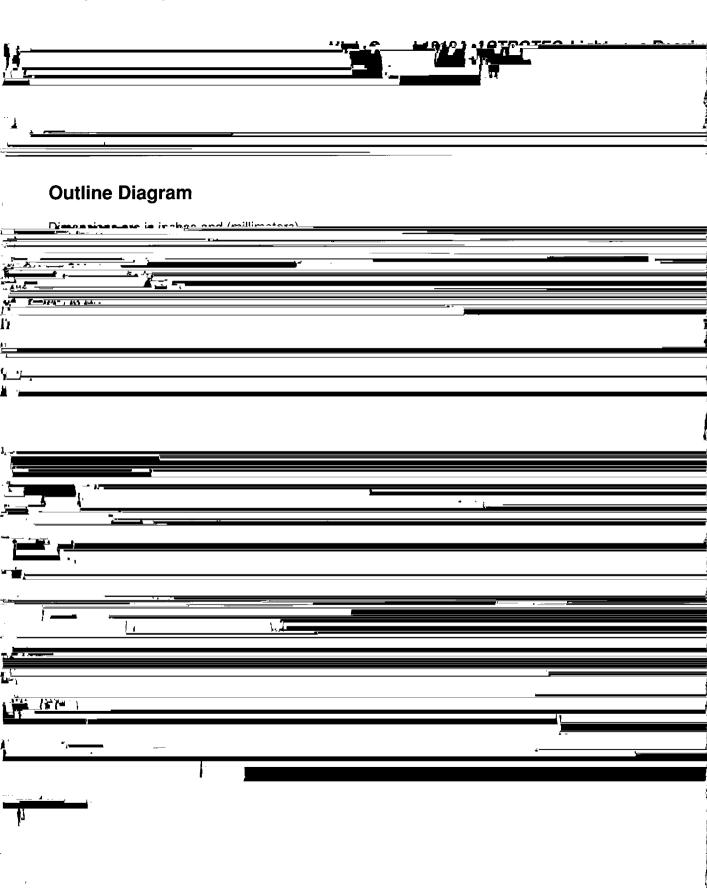
74ACT11657 OCTAL TRANSCEIVER WITH PARITY GENERATOR/CHECKER AND 3-STATE OUTPUTS AUGUST 1992 - REVISED APRIL 1993

	ON		


NUMBER OF A OR B	INPUTS			INPUT/OUTPUT		OUTPUTS		
INPUTS THAT ARE HIGH	ŌĒ	T/R	ODD/EVEN	PARITY	ERR	OUTPUT MODE		
<u> </u>	L	Н	Н	Н	Z	Transmit		
	L	н	L	L	z	Transmit		
	L	L	н	н	Н	Receive		
0, 2, 4, 6, 8	L	L	н	L	L	Receive		
	L	L	L	н	L	Receive		
	L	L	L	L	н	Receive		
<u>-,,,,,,,,,, </u>	L	Н	Н	L	Z	Transmit		
	L	н	L	н	z	Transmit		
	L	L	н	н	L	Receive		
1, 3, 5, 7	L	L	н	L	н	Receive		
	L	L	L	н	н	Receive		
	L	L	L	L	L	Receive		
Don't care	н	×	X	Z	Z	Z		

logic symbol†




[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

AUGUST 1992 - REVISED APRIL 1993

operating characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER				TEST CONDITIONS		TYP	UNIT
上		Power dissipation capacitance per transceiver	Outputs enabled	C ₁ = 50 pF,	C(= 50 pF. f = 1 MHz	95	ρF
10	pd Power		Outputs disabled	O[2 30 pr, 1 = 1	1 = 1 101112	21	P'

PARAMETER MEASUREMENT INFORMATION 2×Vcc **TEST S**1 tPLH/tPHL Open 500 Ω Open From Output tpl.z/tpzl 2 × Vcc **♀GND Under Test** tPHZ/tPZH GND CL = 50 pF 500 Ω (see Note A) LOAD CIRCUIT Output 3 V Control (low-level enabling) tpl.Z Output Input ~Vcc 1.5 V 1.5 V Waveform 1 (see Note B) S1 at 2 × VCC VOL (see Note C) tpHZ-Output Vон ٧он

NOTES: A. CL includes probe and jig capacitance.

Output

B. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_O = 50 Ω, t_f = 3 ns, t_f = 3 ns.

50% VCC

VOL

Waveform 2

(see Note C)

S1 at GND

80% VCC

~0 V

50% V_CC

VOLTAGE WAVEFORMS

- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. The outputs are measured one at a time with one input transition per measurement.

50% VCC

VOLTAGE WAVEFORMS

Figure 1. Load Circuit and Voltage Waveforms