Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

R8A66165SP / R8A66166SP / R8A66167SP / R8A66168SP n-BIT HIGH VOLTAGE OUTPUT LED DRIVER WITH SHIFT REGISTER AND LATCH

REJ03F0281-0101 Rev. 1.01 Dec. 15, 2008

DESCRIPTION

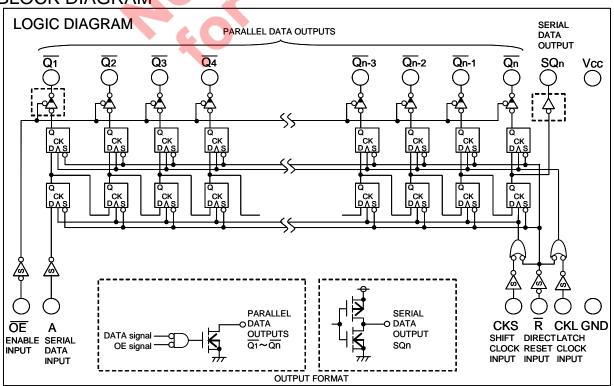
R8A66165~R8A66168 are high voltage LED array driver having n-bit serial input and parallel output shift register function with direct coupled reset input and output latch function.

These products guarantees the output current of 24mA which is sufficient for anode common LED drive, capable of following n-bits continuously at the same time. Parallel output is 24V high voltage open drain output.

In addition, as this product has been designed in complete CMOS, power consumption can be greatly reduced when compared with conventional BIPOLAR or Bi-CMOS products.

The product part number and the parallel data outputs number are shown in the following table.

Part number	Parallel data outputs	$\overline{Q1}{\sim}\overline{Qn}$	SQn
	number n		
R8A66165SP	8-Bit	$\overline{Q1}{\sim}\overline{Q8}$	SQ8
R8A66166SP	16-Bit	<u>Q</u> 1∼ <u>Q16</u>	SQ16
R8A66167SP	24-Bit	<u>Q1</u> ∼ <u>Q24</u> ▲	SQ24
R8A66168SP	32-Bit	<u>Q1</u> ∼ <u>Q32</u>	SQ32


FEATURES

- Anode common LED drive
- Vcc 5V or 3.3V single power supply
- High voltage, High output current: all parallel outputs Q1 ~Qn V0 = 24V high voltage, IOL = 24mA simultaneous lighting available
- Low power dissipation: 100uW/package (max) (Vcc =5.0V, Ta =25°C, quiescent state)
- High noise margin: Schmitt input circuit provides responsiveness to a long line length
- Equipped with direct-coupled reset
- Open drain output: (except serial data output SQn)
- Wide operating temperature range: Ta = -40°C~+85°C

APPLICATION

• LED array drive, The various high voltage LED display modules

BLOCK DIAGRAM

PIN SPECIFICATIO	NI.					
FIN SELCII ICATIO	'IN		R8A66165SP	R8A66166SP	R8A66167SP	R8A66168SP
Pin Name	Symbol	In/Out	8-BIT	16-BIT	24-BIT	32-BIT
DIRECT RESET INPUT	/R	Input	1	1	1	1
SERIAL DATA INPUT	A	Input	1	1	1	1
SHIFT CLOCK INPUT	CKS	Input	1	1	1	1
LATCH CLOCK INPUT	CKL	Input	1	1	1	1
ENABLE INPUT	/OE	Input	1	1	1	1
PARALLEL DATA OUTPUTS	/Q1~/Qn	Output	8	16	24	32
SERIAL DATA OUTPUT	SQn	Output	1	1	1	1
Vcc	Vcc	-	1	1	2	3
GND	GND	-	1	1	4	7
Total pin count		_	16	24	36	48

PIN CONFIGURATION (TOP VIEW)

Vcc 1 O	16 → /Q1	/Q1 ← 1 O	24 → /Q3
A → 2 2	15 → /Q2	/Q2 ← 2	23 → /Q4
$ \begin{array}{ccc} A & \rightarrow & 2 & & \\ /OE & \rightarrow & 3 & & \\ CKL & \rightarrow & 4 & & \\ /R & \rightarrow & 5 & & \\ \end{array} $	14 → /Q3	Vcc <u>3</u>	22 → /Q5
CKL →4	13 → /Q4	A → 4 R8 A	21 → /Q6
/R → 5	12 → /Q5	/OE → <u>5</u>	20 → /Q7
CKS → 6	11 → /Q6	$CKL \rightarrow \boxed{6}$	19 → /Q8
GND 7 (D 10 → /Q7	/R → 7	18 → /Q9
SQ8 ← 8	9 → /Q8	/R → 7 CKS → 8	17 → /Q10
		GND 9 \heartsuit	16 → /Q11
		SQ16 ← 10	15 → /Q12
		/Q15 ← 11	14 → /Q13
		(a)	

/Q1	← 1	0	36	→ /Q5
/Q2	← 2		35	→ /Q6
/Q3	← 3		34	→ /Q7
/Q4	← 4		33	→ /Q8
GND	5		32	GND
Vcc	6		31	→ /Q9
Α	→ 7	Z)	30	\rightarrow /Q10
/OE	→ 8	8/2	29	→ /Q11
CKL	→ 9	6	28	\rightarrow /Q12
/R	→ 10	61	27	\rightarrow /Q13
CKS	→ 11	6	26	\rightarrow /Q14
Vcc	12	S	25	\rightarrow /Q15
GND	13	P	24	→ /Q16
SQ24	← 14		23	GND
/Q21	← 15		22	→ /Q17
/Q22	← 16		21	→ /Q18
/Q23	← 17		20	→ /Q19
/Q24	← 18		19	\rightarrow /Q20

GND		0		48	\rightarrow	/Q7
/Q1	← 2			47	\rightarrow	/Q8
/Q2	← 3			46	\rightarrow	/Q9
/Q3	← 4			45	\rightarrow	/Q10
/Q4	← 5			44	\rightarrow	/Q11
/Q5	← 6			43		GND
/Q6	← 7			42	\rightarrow	/Q12
GND	8			41	\rightarrow	/Q13
Vcc	9			40	\rightarrow	/Q14
Α	→ 10		굤	39	\rightarrow	/Q15
/OE	→ 11		\approx	38	\rightarrow	/Q16
CKL	→ 12		66	37		Vcc
/R	→ 13		=	36		GND
CKS	→ 14		8	35	\rightarrow	/Q17
Vcc	15		S	34	\rightarrow	/Q18
GND	16		U	33	\rightarrow	/Q19
SQ32	← 17			32	\rightarrow	/Q20
/Q27	← 18			31	\rightarrow	/Q21
/Q28	← 19			30		GND
/Q29	← 20			29	\rightarrow	/Q22
/Q30	← 21			28	\rightarrow	/Q23
/Q31	← 22			27	\rightarrow	/Q24
/Q32	← 23			26	\rightarrow	/Q25
GND	24			25	\rightarrow	/Q26
				-		

FUNCTIONAL DESCRIPTION

As R8A66165~R8A66168 uses silicon gate CMOS process. It realizes high-speed and high-output currents sufficient for LED drive while maintaining low power consumption and allowance for high noises.

Each bit of a shift register consists of two flip-flop having independent clocks for shifting and latching.

As for clock input, shift clock input CKS and latch clock input CKL are independent from each other, shift and latch operations being made when "L" changes to "H".

Serial data input A is the data input of the first-step shift register and the signal of A shifts shifting registers one by one when a pulse is impressed to CKS. When A is "H", the signal of "L" shifts.

When the pulse is impressed to CKL, the contents of the shifting register at that time are stored in a latching register, and they appear in the parallel data outputs from $\overline{Q1} \sim \overline{Qn}$.

Outputs $\overline{Q1} \sim \overline{Qn}$ are 24V high voltage open drain outputs.

To extend the number of bits, use the serial data output SQn which shows the output of the shifting register of the last n bit.

When reset input \overline{R} is changed to "L", $\overline{Q1} \sim \overline{Qn}$ and SQn are reset. In this case, shifting and latching register are set.

If "H" is impressed to output enable input \overline{OE} , $\overline{Q1} \sim \overline{Qn}$ reaches the high impedance state, but SQn does not reach the high impedance state. Furthermore, change in OE does not affect shift operation.

FUNCTION TABLE (Note 1)

Operation mode				Input							Parallel data output					Serial data	Remarks
Operation	on mode	R	CKS	CKL	Α	Œ	Q ₁	Q2	Q ₃	Q ₄		Qn-3	Qn-2	Qn-1	Qn Qn	output SQn	Remarks
Re	set	L	Х	Х	Χ	Х	Z	Z	Z	Z		Z	Z	Z	Z	L	_
	Shift t1	Н	1	Х	Η	L	Q ₁ 0	Q Q	Q ₃ 0	Q ₄ 0		Qn-3 ⁰	Qn-2 ⁰	Qn-1 ⁰	Qn Qn	qn-1 ⁰	Output
Shift	Latch t2	Н	Х	1	Χ	L	L	q1 ⁰	q2 ⁰	q з0		qn-4 ⁰	q n-3 ⁰	qn-2 ⁰	qn-1 ⁰	qn-1 ⁰	Lighting "H"
Latch operation	Shift t1	Н	1	Х	L	L	Q ₁ 0	Q ₂ 0	$\overline{Q_3}^0$	Q ₄ 0		Qn-3 ⁰	Qn-2 ⁰	Qn-1 ⁰	Q _n 0	qn-1 ⁰	Output
·	Latch t2	Н	Х	1	Х	L	Z	q1 ⁰	q2 ⁰	q3 ⁰		qn-4 ⁰	q n-3 ⁰	qn-2 ⁰	qn-1 ⁰	qn-1 ⁰	Lights-out "L"
Output	disable	Х	Х	Х	Х	Н	Z	Z	Z	Z		Z	Z	Z	Z	qn	_

Note1: ↑ : Change from low-level to high-level

: Output state Q before CKL changed

X: Irrelevant

: Contents of shift register before CKS changed

: Contents of shift register t1, t2 : t2 is set after t1 is set

: High impedance

ABSOLUTE MAXIMUM RATINGS (Ta=-40~+85°C, unless otherwise noted)

Symbol	Parameter		Conditions	Ratings	Unit
Vcc	Supply voltage			−0.5~+7.0	V
Vı	Input voltage			-0.5~Vcc+0.5	V
Vo	Output voltage	Q1∼Qn		-0.5~ +27	V
		SQn		-0.5~Vcc+0.5	V
lo	Output current per	Q1∼Qn		50	mA
	Output pin	SQn		±25	1
ICC	Supply / GND current	R8A66165SP	VCC, GND	-20、+220	mA
		R8A66166SP	1	-20、+410	1
		R8A66167SP	1	-20、+600	1
		R8A66168SP	1	-20、+790	1
Pd	Power dissipation	R8A66165SP		500	mW
		R8A66166SP		500	1
		R8A66167SP	1	650	1
		R8A66168SP	1	650	1
Tstg	Storage temperature range	•		−65~150	°C

RECOMMENDED OPERATING CONDITIONS (Ta=-40~+85°C, unless otherwise noted)

Symbol	Parameter			Limits		Unit
			Min.	Тур.	Max.	
VCC	Supply voltage	5.0V support	4.5	5.0	5.5	V
		3.3V support	3.0	3.3	3.6	V
Vı	Input voltage		0		Vcc	V
Vo	Output voltage	SQn	0		Vcc	V
	Q1∼Qn	IOZH≦1 <mark>0u</mark> A	0		24	V
Topr	Operating temperature range		-40		85	°C

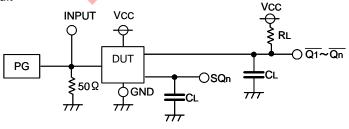
ELECTRICAL CHARACTERISTICS (Ta=-40~+85°C,Vcc=3.0~5.5V, unless otherwise noted)

Symbol	Parameter	Test conditions			Limits			
				Min.	Тур.	Max.		
VT+	Positive-going threshold voltage	Vo=0.1V, Vo	C-0.1V	0.48xVcc		0.70xVcc	V	
VT-	Negative-going threshold voltage	VO=0.1V, VC	C-0.1V	0.20xVCC		0.46xVCC	V	
VOL	Low-level output voltage Q1~Qn	VI=VT+,VT-	IOL=24mA (Note 3)			0.55	٧	
Voн	High-level output voltage SQn	VI=VT+,VT-	IOH=-4mA	VCC-0.40			V	
VOL	Low-level output voltage SQn	VI=VT+,VT-	IOL=4mA			0.40	V	
lін	High-level input current	VI=VCC				5	uA	
lıL	Low-level input current	VI=GND				-5	uA	
loz	Off-state output leak	VI=VT+,VT-	VO=0~24V			±10	uA	
ICC	Quiescent supply current	VI=VCC,GND				1	mA	

Note2: ELECTRICAL CHARACTERISTICS (except ICC) above is the specification per a pin.

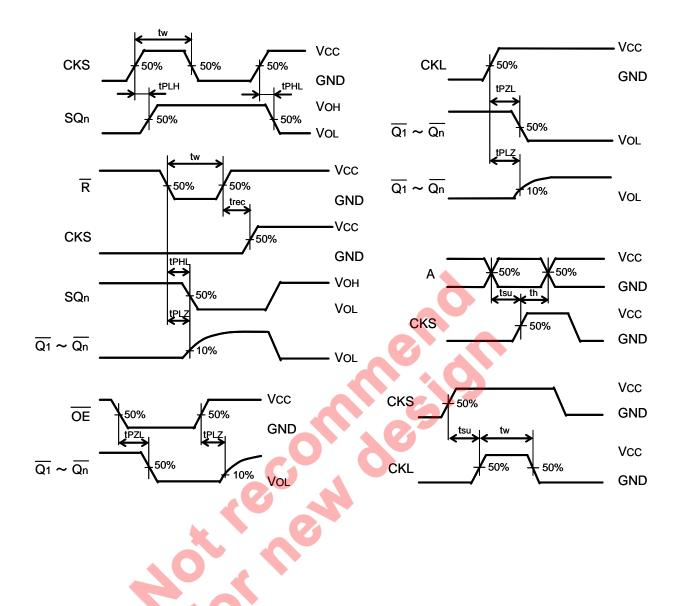
Note3 : Each pin of $\overline{\text{Q1}} \sim \overline{\text{Qn}}$ guarantees IOL=24mA.

Simultaneous lighting of all n-bits is available both for dynamic and static lighting.


SWITCHING CHARACTERISTICS (Ta=-40~+85°C, VCC=5.0V or 3.3V)

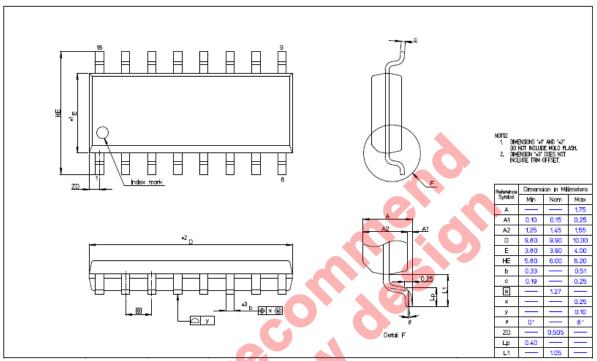
Symbol	Parameter		Test	5.0V	specific	ation	3.3\	specific	ation	Unit
			conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	
fmax	Maximum clock frequency					4			3.3	MHz
tPLH	Output "L-H" and "H-L"	CKS-SQn				125			150	ns
tPHL	propagation time					125			150	ns
tPHL	Output "H-L" propagation time	R-SQn	CL=50pF			125			150	ns
tPLZ	Output "L-Z" propagation time	R-Q1~Qn (turned off)	RL=1KΩ			200			220	ns
tPZL	Output "Z-L" propagation time	CKL-Q1~Qn (turned on)	(Note 4)			125			150	ns
tPLZ	Output "L-Z" propagation time	CKL-Q1~Qn (turned off)				200			220	ns
tPZL	Output "Z-L" propagation time	OE-Q1~Qn (turned on)				125			150	ns
tPLZ	Output "L-Z" propagation time	OE-Q1~Qn (turned off)				200			220	ns
Cı	Input capacitance					10			10	pF

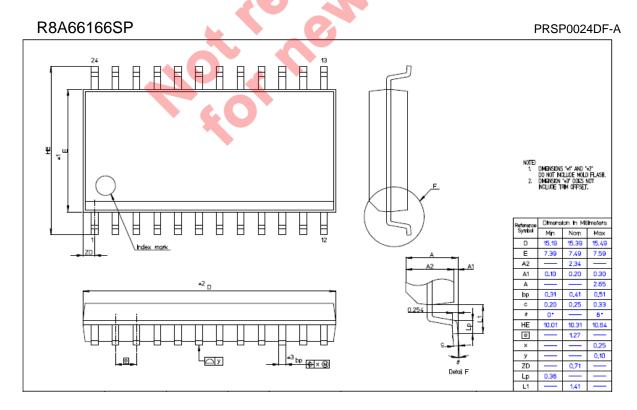
TIMING REQUIREMENTS (Ta=-40~+85°C, Vcc=5.0V or 3.3V


Symbol	Parameter	Test	5.0V specification		3.3\	Unit			
		conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	
tw	CKS,CKL,R pulse width		125			150			ns
tsu	A setup time with respect to CKS		125			150			ns
tsu	CKS setup time with respect to CKL	(Note 4)	125			150			ns
th	A hold time with respect to CKS		15			20			ns
trec	R recovery time with respect to CKS, CKL		70			80			ns

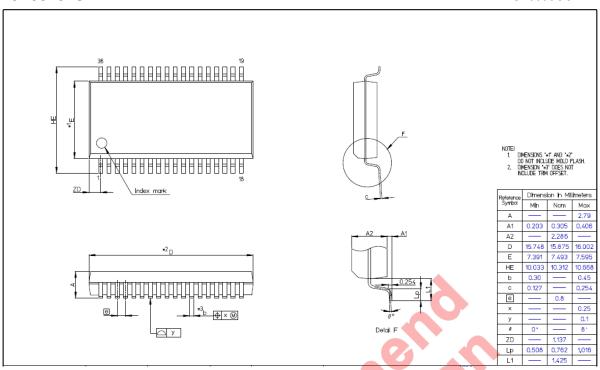
Note 4: Test Circuit

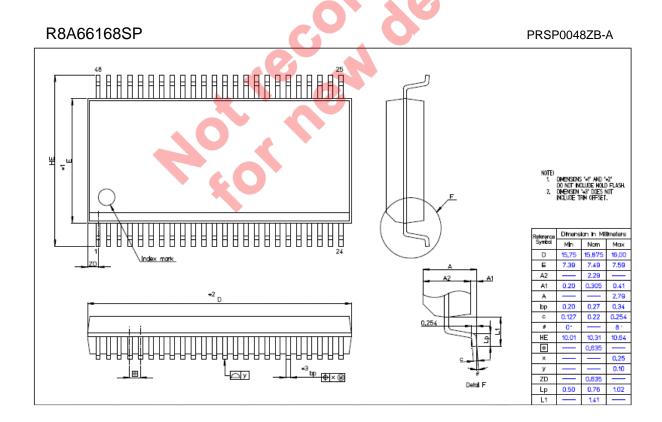
- (1) The pulse generator (PG) has the following characteristics (10%~90%). :tr = 6ns, tf = 6ns.
- (2) The capacitance CL includes stray wiring capacitance and the probe input capacitance.


TIMING DIAGRAM



PACKAGE OUTLINE


Product part number	Package	RENESAS Code	Previous Code
R8A66165SP	16pin SOP	PRSP0016DJ-A	16P2X-E
R8A66166SP	24pin SOP	PRSP0024DF-A	24P2X-B
R8A66167SP	36pin SSOP	PRSP0036GC-A	36P2X-B
R8A66168SP	48pin SSOP	PRSP0048ZB-A	48P2X-A


R8A66165SP PRSP0016DJ-A

R8A66167SP PRSP0036GC-A

All trademarks and registered trademarks are the property of their respective owners.

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application critical examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations.

 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, including the subject of the product of the product of the product of the date this document is issued. Such information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.

 5. Renesas has also used reasonable care in compling the information included in this document.

 6. When using or otherwise relying on the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as result of errors or om

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510