

3.3V 16-Bit Edge Triggered D-Type Flip-Flop with 3-State Outputs

Product Features

- Advanced low power CMOS design for 2.7V to 3.6V
 V_{cc} operation
- Supports 5V input/output tolerance in mixed signal mode operation
- · Function compatible with LVT family of products
- · Balanced ±24mA output drive
- Typical V_{OLP} (Output Ground Bounce) < 0.8V at V_{CC} =3.3V, T_A =25°C
- · I_{off} and Power Up/Down 3-State support live insertion
- · Bus Hold on data inputs eliminates the need for external pull-up/down resistors
- · Latch-up performance exceeds 200mA Per JESD78
- · ESD protection exceeds JESD 22
 - -2000V Human-Body Model (A114-B)
 - 200V Machine Model (A115-A)
- · Packages(Pb-free available):
 - -48-pin 240-mil wide plastic TSSOP (A48)
 - -48-pin 300-mil wide plastic SSOP (V48)
- · Industrial Temperature: -40°C to +85°C

Logic Block Diagram

Product Description

Pericom Semiconductor's PI74LVTC series of logic circuits are produced using Pericom's advanced CMOS technology, achieving industry leading speed.

The PI74LVTCH16374 is a 16-bit edge-triggered D-type Flip-Flop designed for low-voltage 2.7V to 3.6V V_{CC} operation, with the capability of interfacing to the 5V system environment. This D-type Flip-Flop is particularly suitable for implementing buffers registers, I/O ports, bidirectional bus drivers, and working registers. This device can be used as two 8-bit flip-flops or one 16-bit flip-flop. On the positive transition of the Clock (CLK) input, the Q outputs of the flip-flop take on the logic levels set up at the data D inputs.

A buffered output enable (\overline{OE}) can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components. \overline{OE} does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high impedance state.

The PI74LVTCH16374 has "Bus Hold" which retains the data input's last valid logic state whenever the data input goes to high-impedance, preventing "floating" inputs and eliminating the need for pull-up/down resistors.

When Vcc is between 0 to 1.5V during power up or power down, the outputs of the device are in the high-impedance state. To ensure the high-impedance state above 1.5V, \overline{OE} should be tied to Vcc through a pullup resistor; the minimum value of the resistor is determined by the current sinking capability of the driver.

The device fully supports live-insertion with its $I_{\rm off}$ and power-up/down 3-state. The $I_{\rm off}$ circuitry disables the outputs when the power is off, preventing the backflow of damaging current through the device. Power-up/down 3-state places the outputs in the high-impedance state during power up or power down, preventing driver conflict.

PS 8654A 05/19/03

1

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Voltage range applied to any output in the high-impedance or power-off state, $V_0^{(1)}$ 0.5V to +6.5V
Voltage range applied to any output in the
active state, $V_0^{(1),(2)}$ -0.5 V to V_{CC} +0.5V
Input clamp current, $I_{IK}(V_I < 0)$
Output clamp current, I _{OK} (V _O <0) –50mA
Continous Output Current IO ±50mA
Continous Current through each VCC or GND pin ±100mA
Package thermal impedance, $\theta_{JA}^{(3)}$: package A 104°C/W
package V 94°C/W
Storage Temperature range, T _{stg} –65°C to 150°C

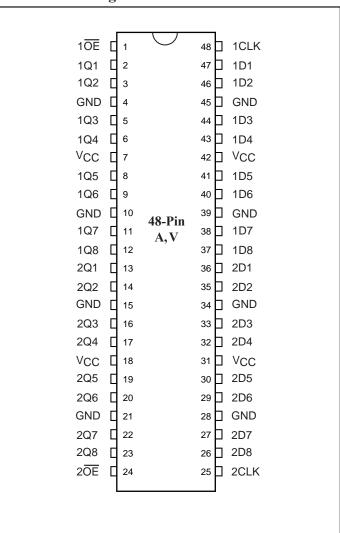
Notes:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

- 1. Input negative-voltage and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.
- 2. This value is limited to 6.5V maximum.
- $3. \, The \, package \, thermal \, impedance \, is \, calculated \, in \, accordance \, with \, JESD \, 51.$

Truth Table⁽⁴⁾

Inp	uts		Outputs
хŌЕ	xCLK	xDx	xQx
L	↑	Н	Н
L	1	L	L
L	H or L	X	Q_0
Н	X	X	Z


Notes:

- 4. H = High Signal Level
 - L = Low Signal Level
 - Q₀=Previous xQx After the last LOW-to-HIGH Transition of CLK Input.
 - X = Don't Care or Irrelevant
 - Z = High Impedance

Product Pin Description

Pin Name	Description				
х ОЕ	Output Enable Input (Active LOW)				
xCLK	Clock Input (Active HIGH)				
xDx	Data Inputs				
xQx	3-State Outputs				
GND	Ground				
V _{CC}	Power				

Product Pin Configuration

$\textbf{Recommended Operating Conditions}^{(5)}$

		Min.	Max.	Units
V _{CC} Supply Voltage	Operating	2.7	3.6	V
V _{IH} High-level Input Voltage	$V_{CC} = 2.7V \text{ to } 3.6V$	2.0		
V _{IL} Low-level Input Voltage	$V_{CC} = 2.7V \text{ to } 3.6V$		0.8	
V _I Input Voltage		0	5.5	
V _O Output Voltage	High or Low State	0	V _{CC}	
	3-State	0	5.5	
IOH High-level output current	$V_{CC} = 2.7V$		-12	
	$V_{CC} = 3.0 \text{V to } 3.6 \text{V}$		- 24	mA
I _O L Low-level output current	$V_{CC} = 2.7V$		12	
	$V_{CC} = 3.0 \text{V to } 3.6 \text{V}$		24	
$\Delta t/\Delta v$ Input transition rise or fall rate			10	ns/V
$\Delta t/\Delta V_{CC}$ Power-up ramp rate		150		μs/V
T _A Operating free-air temperature	'	- 40	85	°C

Notes: 5.All unused inputs must be held at V_{CC} or GND to ensure proper device operation.

$\textbf{DC Electrical Characteristics} \, (\text{Over the Operating Range}, T_A = -40 ^{\circ}\text{C} + 85 ^{\circ}\text{C})$

Parameters	Description		,	Test Conditions		Min.	Max.	Units		
V _{IK}	Clamp Diode Voltage		$V_{CC} = 2.7V$	$I_I = -18\text{mA}$			-1.2V			
			$V_{\rm CC} = 2.7 \text{V to } 3.6 \text{V}$	$I_{OH} = -100 \mu A$		V _{CC} -0.2V		1		
	Output High Voltage		$V_{CC} = 2.7V$	$I_{OH} = -12mA$		2.2				
V_{OH}	Output High Voltage		$V_{CC} = 3V$	$I_{OH} = -12 \text{mA}$		2.4				
			VCC - 3V	$I_{OH} = -24$ mA		2.2		V		
			$V_{CC} = 2.7V \text{ to } 3.6V$	$I_{OL} = 100 \mu A$			0.2			
V	Output Lovy Voltage		$V_{CC} = 2.7V$	$I_{OL} = 12mA$			0.4			
V_{OL}	Output Low Voltage		$V_{CC} = 3V$	$I_{OL} = 12mA$			0.4			
			VCC - 3V	$I_{\rm OL} = 24 \text{mA}$			0.55			
		Control Inputs	$V_{CC} = 0V \text{ to } 3.6V$	$V_{\rm I} = 0 \text{V to } 5.5 \text{V}$			±5			
I_{I}				$V_{\rm I} = 5.5 V$						
П	Input Leakage Current	Data Inputs	$V_{CC} = 3.6V$	$V_{\rm I} = V_{\rm CC}$			±5			
				$V_{\rm I} = {\rm GND}$						
	Data Input Hold Current		V	V - 2V		$V_{\rm I} = 0.8 V$		75		
$I_{I(HOLD)} \\$			$V_{CC} = 3V$	$V_{\rm I} = 2V$		-75				
			$V_{CC} = 3.6V^{(6)}$	$V_{\rm I} = 0$ to 3.6V			±500			
I_{OFF}	Power Off Output Leak	age Current	$V_{CC} = 0V$	$V_{\rm I}$ or $V_{\rm O} = 0$ V to 5.5V			±5	μA		
I_{OZ}	3-State Output Leakage	Current	$V_{CC} = 2.7V \text{ to } 3.6V$	$V_O = 0V$ to 5.5V			±5	μι		
$I_{\rm OZPU}$	Power-Up 3-State Curr	ent	$V_{CC} = 0V \text{ to } 1.5V$	$\frac{V_O}{OE} = 0.5V$ to 5.5V, $\frac{OE}{OE} = \text{don't care}$			±5			
I_{OZPD}	Power-Down 3-State Current		$V_{CC} = 1.5 V \text{ to } 0 V$	$V_O = 0.5V$ to 5.5V, $\overline{OE} = \text{don't care}$			±5			
Т	I _{CC} Quiescent Power Supply Current		V - 2.7V + 2.6V	$V_{\rm I} = V_{\rm CC}$ or GND	1 - 0		100]		
ICC			$V_{CC} = 2.7V \text{ to } 3.6V$	$3.6V \le V_I \le 5.5V$	$I_{O} = 0$		100			
ΔI_{CC}	Increase in I _{CC}		$V_{CC} = 3V \text{ to } 3.6V$	One input at V_{CC} - $0.6V^{(7)}$ Other inputs at V_{CC} or GN			200			

Notes: 6. This is the maximum bus-hold dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

7. This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

4

Capacitance

Parameters	Description	Test Conditions	Тур.(8)	Units
C_{I}	Input Capacitance	$V_{CC} = 3.3 V$, $V_I = V_{CC}$ or GND	3.7	
Co	Output Capacitance	$V_{CC} = 3.3 \text{V}, V_O = V_{CC} \text{ or GND}$	7	рF
C _{PD}	Power Dissipation Capacitance (9)	$V_{CC} = 3.3V$, $V_{I} = 0$ or V_{CC} , $f=10$ MHz	14	

Notes: 8. All typical values are measured at $V_{CC} = 3.3V$, $T_A = 25$ °C.

Timing Requirements Over Operating Range

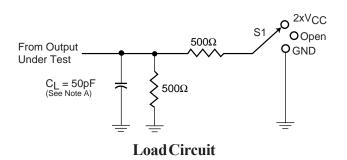
Parameters	Description	V _{CC} = 3.	3V ±0.3V	V _{CC} =	Units	
Turume ters	Bestipion	Min.	Max.	Min.	Max.	
f _{max}		150		150		MHz
t_{W}	Pulse Duration, CLK HIGH or LOW	3		3		
t _{su}	Setup Time, Data before CLK↑	1.8		2		ns
t _h	Hold Time, Data after CLK↑	0.8		0.6		

Switching Characteristics Over Operating Range

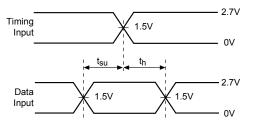
				$V_{CC} = 3.3V \pm 0.3V$			$V_{\rm CC} = 2.7 V$						
Parameters	Description	From (Input)	G #0 F B #0001			0Ohm	$C_{L} = 50 pF, R_{L} = 500 Ohm$		Units				
				Min.	Тур. (10)	Max.	Min.	Max.					
tPLH	Propagation Dalay	CLK	0	1.0	3.0	4.2		4.7					
$t_{ m PHL}$	Propagation Delay	CLK	CLK Q	1.0	2.9	4.2		4.7					
t _{PZH}	Outred Freshle Time	ŌE	0	1.0	3.0	4.5		5.0					
t _{PZL}	Output Enable Time		OE	OL	Q	1.0	3.1	4.7		5.2	ns		
t _{PHZ}	O 4		0	1.0	2.6	4.2		4.7					
tPLZ	Output Disable Time	OE	OE	OE	OE	OE	E Q	1.0	2.5	4.4		4.9	
t _{SK(O)}	Output to Output Skew ⁽¹¹⁾					0.5							

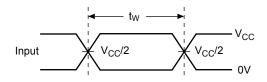
5

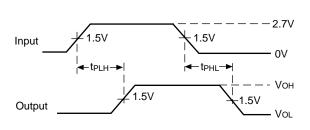
Notes: 10. All typical values are measured at $V_{CC} = 3.3V$, $T_A = 25$ °C

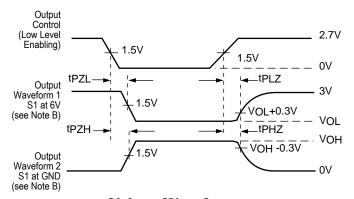

11. Skew between any two outputs, switching in the same direction.

PS 8654A 05/19/03


^{9.} C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current con sumption (I_{CCD}) at no output loading and operating at 50% duty cycle, C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC}\text{static})$.


PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7V and 3.3V ±0.3V


Test	S1
tplh/tphl	Open
tplz/tpzl	6V
tphz/tpzh	GND


Voltage Waveforms Setup and Hold Times

Voltage Waveforms Pulse Duration

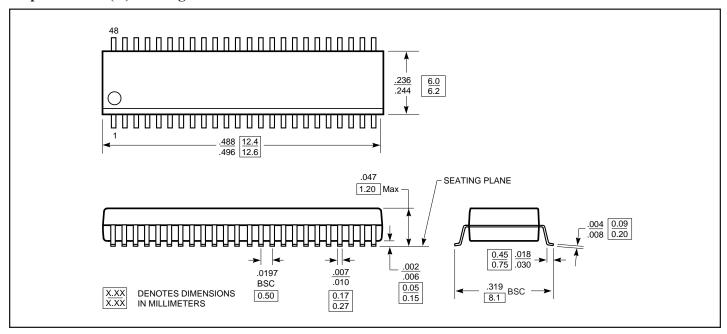
Voltage Waveforms Propagation Delay Times

Voltage Waveforms Enable and Disable Times

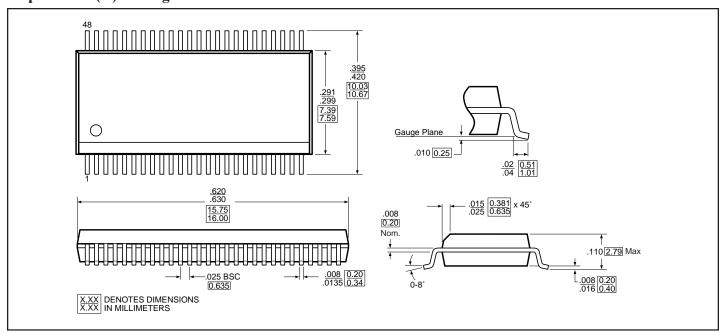
Figure 1. Load Circuit and Voltage Waveforms

Notes:

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input impulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , $t_R \leq$ 2.5ns, $t_F \leq$ 2.5ns.


6

D. The outputs are measured one at a time with one transition per measurement.


PS 8654A 05/19/03

48-pin TSSOP (A) Package

48-pin SSOP (V) Package

Ordering Information

Ordering Code	Package Code	Package Description
PI74LVTCH16374A	A	48-pin, 240-mil wide plastic TSSOP
PI74LVTCH16374AE	A	48-pin, 240-mil wide plastic TSSOP
PI74LVTCH16374V	V	48-pin, 300-mil wide plastic SSOP
PI74LVTCH16374VE	V	48-pin, 300-mil wide plastic SSOP

Notes:

- 1. Thermal characteristics can be found on the company web site at http://www.pericom.com/packaging/mechanicals.php
- 2. X = Tape/Reel