August 1998

National Semiconductor

100341 Low Power 8-Bit Shift Register

General Description

The 100341 contains eight edge-triggered, D-type flip-flops with individual inputs (P_n) and outputs (Q_n) for parallel operation, and with serial inputs (D_n) and steering logic for bidirectional shifting. The flip-flops accept input data a setup time before the positive-going transition of the clock pulse and their outputs respond a propagation delay after this rising clock edge.

The circuit operating mode is determined by the Select inputs S_0 and S_1 , which are internally decoded to select either "parallel entry", "hold", "shift left" or "shift right" as described in the Truth Table. All inputs have 50 k Ω pull-down resistors.

Features

- 35% power reduction of the 100141
- 2000V ESD protection
- Pin/function compatible with 100141
- Voltage compensated operating range = -4.2V to -5.7V
- Standard Microcircuit Drawing (SMD) 5962-9459101

Logic Symbol

Pin Names	Description
CP	Clock Input
S ₀ , S ₁	Select Inputs
D ₀ , D ₇	Serial Inputs
P ₀ -P ₇	Parallel Inputs
Q ₀ –Q ₇	Data Outputs

© 1998 National Semiconductor Corporation DS100315

Truth Table

Function			Inputs						Out	puts			
	D ₇	Do	S ₁	So	СР	Q ₇	Q ₆	Q ₅	Q_4	Q ₃	Q ₂	Q ₁	Qo
Load Register	X	X	L	L	~	P ₇	P ₆	P ₅	P_4	P ₃	P ₂	P ₁	Po
Shift Left	Х	L	L	н	~	Q ₆	Q ₅	Q ₄	Q_3	Q ₂	Q ₁	Q ₀	L
Shift Left	X	н	L	н	~	Q ₆	Q ₅	Q ₄	Q_3	Q ₂	Q ₁	Qo	н
Shift Right	L	Х	н	L	~	L	Q ₇	Q ₆	Q ₅	Q ₄	Q ₃	Q ₂	Q ₁
Shift Right	н	X	н	L	~	н	Q ₇	Q ₆	Q_5	Q ₄	Q ₃	Q ₂	Q ₁
Hold	Х	Х	Н	н	Х								
Hold	X	X	Х	X	н	No Change							
Hold	X	X	х	x	L								

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Above which the useful life may be impaired

–65°C to +150°C
+175°C
-7.0V to +0.5V
V _{EE} to +0.5V
–50 mA

ESD (Note 2)

≥2000V

Recommended Operating Conditions

Military Version

DC Electrical Characteristics

 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND, T_{C} = -55°C to +125°C

Symbol	Parameter	Min	Max	Units	Тc	Condi	tions	Notes	
V _{OH}	Output HIGH Voltage	-1025	-870	mV	0°C to +125°C				
		-1085	-870	mV	–55°C	$V_{IN} = V_{IH}$ (Max)	Loading with	(Notes 3, 4,	
V _{OL}	Output LOW Voltage	-1830	-1620	mV	0°C to +125°C	or V _{IL} (Min)	50Ω to –2.0V	5)	
		-1830	-1555	mV	–55°C	-			
V _{OHC}	Output HIGH Voltage	-1035		mV	0°C to +125°C				
		-1085		mV	–55°C	V _{IN} = V _{IH} (Min)	Loading with	(Notes 3, 4,	
V _{OLC}	Output LOW Voltage		-1610	mV	0°C to +125°C	or V _{IL} (Max)	V _{IL} (Max) 50Ω to -2.0V		
			-1555	mV	–55°C	-			
V _{IH}	Input HIGH Voltage	-1165	-870	mV	–55°C to +125°C	Guaranteed HIG	l Signal	(Notes 3, 4,	
						for All Inputs		5, 6)	
V _{IL}	Input LOW Current	-1830	-1475	mV	–55°C to +125°C	Guaranteed LOW	/ Signal	(Notes 3, 4,	
						for All Inputs		5, 6)	
I _{IL}	Input LOW Current	0.50		μA	–55°C to +125°C	$V_{EE} = -4.2V$		(Notes 3, 4,	
						$V_{IN} = V_{IL}$ (Min)		5, 6)	
I _{IH}	Input High Current		240	μA	0°C to +125°C	V _{EE} = -5.7V		(Notes 3, 4,	
			340	μA	–55°C	$V_{IN} = V_{IH}$ (Max)		5)	
I_{EE}	Power Supply Current					Inputs Open			
		-168	-55	mA	$hA = -55^{\circ}C$ to $+125^{\circ}C = -4.2V$		-4.2V to -4.8V		
		-178	-55	mA		V _{EE} = -4.2V to -	-5.7V	0,	

Note 3: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specifications which can be considered a worst case condition at cold temperatures.

Note 4: Screen tested 100% on each device at -55°C, +25°C and +125°C, Subgroups 1, 2, 3, 7, and 8.

Note 5: Sample tested (Method 5005, Table I) on each manufactured lot at -55°C, +25°C, and +125°C, Subgroups A1, 2, 3, 7, and 8.

Note 6: Guaranteed by applying specified input condition and testing $V_{\mbox{OH}}/V_{\mbox{OL}}.$

AC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _c =	–55°C	T _c =	+25°C	T _c = +125°C U		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max	1		
f _{max}	Max Clock Frequency	400		400		300		MHz	Figures 2, 3	4
t _{PLH}	Propagation Delay	0.50	2.50	0.50	2.30	0.50	2.80	ns		(Notes 7, 8, 9, 11)
t _{PHL}	CP to Output								Figures 1, 3	
t _{TLH}	Transition Time	0.30	1.30	0.30	1.30	0.30	1.30	ns		
t _{THL}	20% to 80%, 80% to 20%									

AC Electrical Characteristics (Continued)

Symbol	Parameter	T _c =	T _c = -55°C		T _c = +25°C		T _c = +125°C		Conditions	Notes
		Min	Max	Min	Max	Min	Max			
t _s	Setup Time									
	D _n , P _n	0.60		0.60		0.60		ns		
	S _n	1.70		1.60		2.40			Figure 4	(Note 10
t _h	Hold Time									
	D _n , P _n	0.90		0.90		0.90		ns		
	S _n	0.50		0.50		0.50				
t _{pw} (H)	Pulse Width HIGH	2.00		2.00		2.00		ns	Figure 3	
	CP									

Note 7: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately after power-up. This provides "cold start" specifications which can be considered a worst case condition at cold temperatures.

Note 8: Screen tested 100% on each device at +25°C temperature only, Subgroup A9.

Note 9: Sample tested (Method 5005, Table I) on each manufactured lot at +25°C, Subgroup A9, and at +125°C and -55°C temperatures, Subgroups A10 and A11. Note 10: Not tested at +25°C, +125°C and -55°C temperature (design characterization data).

Note 11: The propagation delay specified is for the switching of a single output. Delays may vary up to 0.40 ns if multiple outputs are switching simultaneously.

Test Circuitry

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Ø	National Semiconductor Corporation Americas Tel: 1.800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com	National Semiconductor Europe Fax: +49 (0) 1 80-530 85 86 Email: europe support@nsc.com Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 78 32 Francias Tel: +49 (0) 1 80-532 78 32	National Semiconductor Asia Pacific Customer Response Group Tei: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com	National Semiconductor Japan Ltd. Tei: 81-3-5620-6175 Fax: 81-3-5620-6179
www.na	ational.com	Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Jobs

Products > Military/Aerospace > Logic > ECL > 100341

100341 Low Power 8-Bit Shift Register

Contents

×

- General Description
- <u>Features</u>
- Datasheet
- Package Availability, Models, Samples & Pricing

General Description

The 100341 contains eight edge-triggered, D-type flip-flops with individual inputs (P_n) and outputs (Q_n) for parallel operation, and with serial inputs (D_n) and steering logic for bidirectional shifting. The flip-flops accept input data a setup time before the positive-going transition of the clock pulse and their outputs respond a propagation delay after this rising clock edge.

The circuit operating mode is determined by the Select inputs S_0 and S_1 , which are internally decoded to select either "parallel entry", "hold", "shift left" or "shift right" as described in the Truth Table. All inputs have 50 k Ohm pull-down resistors.

Features

- 35% power reduction of the 100141
- 2000V ESD protection
- Pin/function compatible with 100141
- Voltage compensated operating range = -4.2V to -5.7V
- Standard Microcircuit Drawing (SMD) 5962-9459101

Datasheet

Title	Size (in Kbytes)	Date	View Online	X Download	Receive via Email
100341 Low Power 8-Bit Shift Register	150 Kbytes	17-Aug-98	View Online	<u>Download</u>	Receive via Email
100341 Mil-Aero Datasheet MN100341-X	80 Kbytes		View Online	Download	Receive via Email

Please use <u>Adobe Acrobat</u> to view PDF file(s). If you have trouble printing, see <u>Printing Problems</u>.

Package Availability, Models, Samples & Pricing

Dout Number	Pack	age	Status	Models		Samples &	Budgeta	ry Pricing	Std	Package
Part Number	Туре	# pins	Status	SPICE	IBIS	Electronic Orders	Quantity	\$US each	Pack Size	Marking
5962-9459101MXA	Cerdip	24	Full production	N/A	N/A		50+	\$34.4000	tube of 15	[logo]¢Z¢S¢4¢A\$E 100341DMQB /Q 5962-9459101MXA
5962-9459101MYA	Cerquad	24	Full production	N/A	N/A		50+	\$37.0000	tube of 14	[logo]¢Z¢S¢4¢A Q\$E 100341 FMQB 5962 -9459101 MYA
5962-9459101VXA	Cerdip	24	Full production	N/A	N/A		50+	\$265.0000	tube of 15	[logo]¢Z¢S¢4¢A\$E 100341J-QMLV 5962-9459101VXA

5962-9459101VYA	Cerquad	24	Full production	N/A	N/A		50+	\$265.0000	tube of 14	[logo]¢Z¢S¢4¢A 100341W- QMLV 5962 -9459101 VYA \$E
100341 MD8	die)	Full production	N/A	N/A				N/A	-
100341 MW8	wafer		Full production	N/A	N/A	•			N/A	-

[Information as of 1-Sep-2000]

Quick Search

Parametric Search <u>System</u> <u>Diagrams</u>

Home

About Languages . About the Site . About "Cookies" National is QS 9000 Certified . Privacy/Security Copyright © National Semiconductor Corporation — Preferences . Feedback

Product

Tree