

DM74ALS646/74ALS646-1 Octal 3-STATE Bus Transceiver and Register

General Description

This device incorporates an octal bus transceiver and an octal D-type register configured to enable multiplexed transmission of data from bus to bus or internal register to bus.

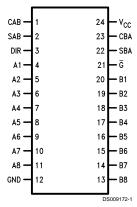
This bus transceiver features totem-pole 3-STATE outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance state and increased high-logic level drive provides this device with the capability of being connected directly to and driving the bus lines in a bus-organized system without the need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The 'ALS646-1 version features the same performance as the standard version with the addition of increased current drive capability to meet the current requirement of various bus architectures. For all ALS-1 products, the recommended maximum $\rm I_{OL}$ is increased to 48 mA.

The registers in the 'ALS646 are edge-triggered D-type flip-flops. On the positive transition of the clock (CAB or CBA), the input bus data is stored into the appropriate register. The CAB input controls the transfer of data into the A register and the CBA input controls the B register.

The SAB and SBA control pins are provided to select whether real-time data or stored data is transferred. A low input level selects real-time data, and a high level selects

stored data. The select controls have a "make before break" configuration to eliminate a glitch which would normally occur in a typical multiplexer during the transition between store and real-time data.


The enable \overline{G} and direction control pins provide four modes of operation: real-time data transfer from bus A to B, real-time data transfer from bus B to A, real-time bus A and/or B data transfer to internal storage, or internally stored data transfer to bus A or B.

When the enable \overline{G} pin is low, the direction pin selects which bus receives data. When the enable G pin is high, both buses become disabled yet their input function is still enabled.

Features

- Maximum I_{OL} increased to 48 mA for 'ALS646-1 product
- Switching specifications at 50 pF
- Switching specifications guaranteed over full temperature and V_{CC} range
- Advanced oxide-isolated, ion-implanted Schottky TTL process
- 3-STATE buffer outputs drive bus lines directly
- Multiplexed real-time and stored data
- Independent registers for A and B buses

Connection Diagram

Order Number DM74ALS646WM, 74ALS646-1WM, DM74ALS646NT or 74ALS646-1NT See Package Number M24B or N24C **Absolute Maximum Ratings** (Note 2)

Supply Voltage 7V Input Voltage

Control Inputs 7V I/O Ports 5.5V

Operating Free-Air Temperature

Range 0°C to +70°C

Storage Temperature Range $$-65^{\circ}\text{C}$$ to +150°C Typical θ_{JA}

N Package 44.5°C/W
M Package 80.5°C/W

Recommended Operating Conditions

Symbol	Paramete	er		Units		
			Min	Nom	Max	
V _{CC}	Supply Voltage			5	5.5	V
V _{IH}	High Level Input Voltage				V	
V _{IL}	Low Level Input Voltage			0.8	V	
I _{OH}	High Level Output Current			-15	mA	
I _{OL}	Low Level Output Current	ALS646			24	mA
		ALS646-1			48	
f _{CLK}	Clock Frequency			40	MHz	
t _W	Pulse Duration, Clocks Low or I				ns	
t _{SU}	Data Setup Time, A before CAE (Note 3)	10↑			ns	
t _H	Data Hold Time, A after CAB or	0↑			ns	
T _A	Free Air Operating Temperature			70	°C	

Note 1: This product meets application requirements of 500 temperature cycles from -65°C to +150°C.

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: \uparrow = With reference to the low to high transition of the respective clock.

Electrical Characteristics

over recommended free air temperature range

Symbol	Parameter	Test	Min	Тур	Max	Units	
V _{IC}	Input Clamp Voltage	$V_{\rm CC}$ = Min, $I_{\rm I}$ = -18 m			-1.2	V	
V _{OH}	High Level Output	$V_{CC} = 4.5V \text{ to } 5.5V$ $I_{OH} = -0.4 \text{ mA}$		V _{CC} - 2			
	Voltage	V _{CC} = Min	$I_{OH} = -3 \text{ mA}$	2.4	3.2		V
			I _{OH} = Max	2			
V _{OL}	Low Level Output	V _{CC} = Min	I _{OL} = 12 mA		0.25	0.4	
	Voltage		I _{OL} = 24 mA		0.35	0.5	V
			I _{OL} = 48 mA		0.35	0.5	
I _I	Input Current at Maximum	V _{CC} = Max	I/O Ports, V _I = 5.5V			100	μA
	Input Voltage		Control Inputs, V _I = 7V			100	
I _{IH}	High Level Input Current	V _{CC} = Max, V _I = 2.7V (Note 4)				20	μA
I _{IL}	Low Level Input	V _{CC} = Max,	Control Inputs			-200	μA
	Current	V _I = 0.4V, (Note 4)	I/O Ports			-200	
Io	Output Drive Current	$V_{CC} = Max, V_O = 2.25V$		-30		-112	mA
I _{cc}	Supply Current	V _{CC} = Max	Outputs High		47	76	
		Outputs Low			55	88	mA
		Outputs Disabled			55	88	

Note 4: For I/O ports the 3-STATE output currents (I_{OZH} and I_{OZL}) are included in the I_{IH} and I_{IL} parameters.

Switching Characteristics over recommended operating free air temperature range (Note 5)

Symbol	Parameter	Conditions	From (Input) To (Output)		LS646/ S646-1	Units	
				Min	Max	1	
t _{PLH}	Propagation Delay Time	V _{CC} = 4.5V to 5.5V,	CBA or CAB	10	30	ns	
FLIT	Low to High Level Output	C _L = 50 pF,	to A or B				
t _{PHL}	Propagation Delay Time	$R_1 = R_2 = 500\Omega,$	CBA or CAB	5	17	ns	
TIL	High to Low Level Output	T _A = Min to Max	to A or B				
t _{PLH}	Propagation Delay Time	-	A or B to	5	20	ns	
FLIT	Low to High Level Output		B or A				
t _{PHL}	Propagation Delay Time	-	A or B to	3	12	ns	
1112	High to Low Level Output		B or A				
t _{PLH}	Propagation Delay Time		SBA or SAB				
	Low to High Level Output		to A or B	12	35	ns	
	(with A or B Low) (Note 6)						
t _{PHL}	Propagation Delay Time	_	SBA or SAB				
1112	High to Low Level Output		to A or B	5	20	ns	
	(with A or B Low) (Note 6)						
t _{PLH}	Propagation Delay Time		SBA or SAB				
	Low to High Level Output		to A or B	6	25	ns	
	(with A or B High) (Note 6)						
t _{PHL}	Propagation Delay Time		SBA or SAB				
	High to Low Level Output		to A or B	5	20	ns	
	(with A or B High) (Note 6)						
t _{PZH}	Output Enable Time		G to	3	17	ns	
	to High Level Output		A or B				
t _{PZL}	Output Enable Time		G to	5	20	ns	
	to Low Level Output		A or B				
t _{PHZ}	Output Disable Time		G to	1	10	ns	
	from High Level Output		A or B				
t _{PLZ}	Output Disable Time		G to	2	16	ns	
	from Low Level Output		A or B				
t _{PZH}	Output Enable Time		DIR to	6	30	ns	
	to High Level Output		A or B				
t _{PZL}	Output Enable Time		DIR to	5	25	ns	
	to Low Level Output		A or B				
t _{PHZ}	Output Disable Time		DIR to	1	10	ns	
	from High Level Output		A or B				
t _{PLZ}	Output Disable Time		DIR to	2	16	ns	
	from Low Level Output		A or B				

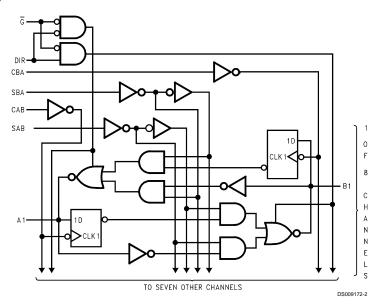
Note 5: See Section 1 for test waveforms and output load.

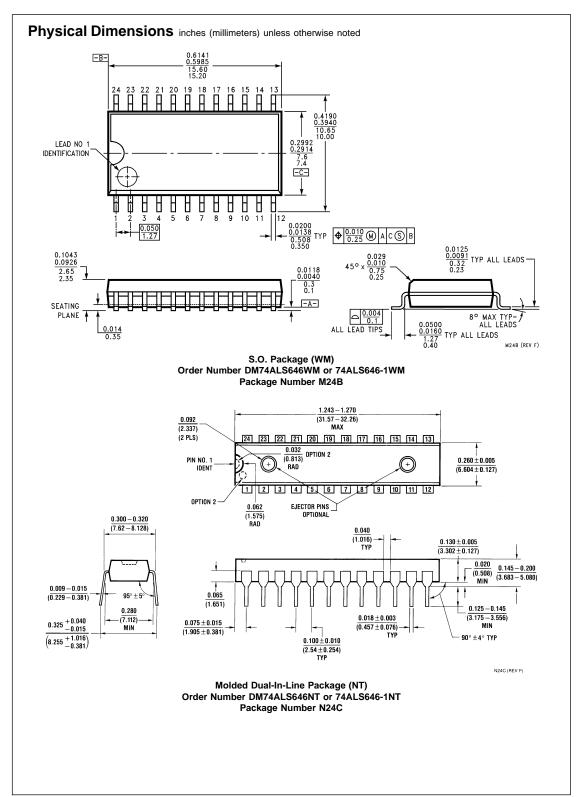
Note 6: These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

Function Table

Inputs					Data I/O	(Note 7)	Operation or Function	
G	DIR	CAB	СВА	SAB	SBA	A1 thru A8	B1 thru B8	
Х	Х	1	Х	Х	Х	Input	Not Specified	Store A, B Unspecified
Χ	Х	Х	1	Х	Х	Not Specified	Input	Store B, A Unspecified
Н	Х	1	↑	Х	Х	Input	Input	Store A and B Data
Н	Х	H/L	H/L	Х	Х	Input	Input	Isolation, Hold Storage

www.fairchildsemi.com


Function Table (Continued)


Inputs						Data I/O	(Note 7)	Operation or Function
G	DIR	CAB	СВА	SAB	SBA	A1 thru A8	B1 thru B8	
L	L	Х	Х	Х	L	Output	Input	Real-Time B Data to a Bus
L	L	Х	H/L	Х	Н	Output	Input	Stored B Data to a Bus
L	Н	Х	Х	L	Х	Input	Output	Real-Time A Data to B Bus
L	Н	H/L	Х	Н	Х	Input	Output	Stored A Data to B Bus

Note 7: The data output functions may be enabled or disabled by various signals at the G and DIR inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.

H = High Logic Level, L = Low Logic Level, X = Don't Care (Either Low or High Logic Levels including transitions), H/L = Either Low or High Logic Level excluding transitions, ↑ = Positive going edge of pulse.

Logic Diagram

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation Americas

Customer Response Center Tel: 1-888-522-5372

Fairchild Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 8 141-35-0
English Tel: +44 (0) 1 793-85-68-56
Italy Tel: +39 (0) 2 57 5631

Fairchild Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: +852 2737-7200 Fax: +852 2314-0061

National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

www.fairchildsemi.com