BURR-BROWN CORP



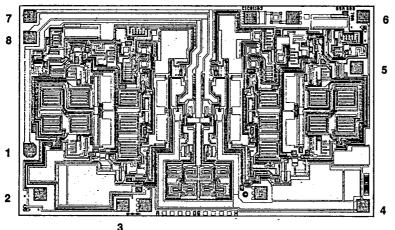
## **OPA2111 DIE**

# **Dual, Low Noise, Precision Difet® OPERATIONAL AMPLIFIER DIE**

### **FEATURES**

- LOW NOISE: 100% TESTED
- LOW BIAS CURRENT
- LOW OFFSET
- LOW DRIFT
- HIGH OPEN-LOOP GAIN
- HIGH COMMON-MODE REJECTION

Difet @ Burr-Brown Corp.


BIFET® National Semiconductor Corp.

### **DESCRIPTION**

The OPA2111 die is a high-precision monolithic Difet (Dielectrically isolated FET) operational amplifier. Outstanding performance characteristics allow its use in the most critical instrumentation applications.

Noise, bias current, voltage offset, drift, open-loop gain, common-mode rejection, and power supply rejection are superior to BIFET® amplifiers.

### **DIE TOPOGRAPHY**



| PAD | FUNCTION             | PAD | FUNCTION             |                             |
|-----|----------------------|-----|----------------------|-----------------------------|
| 1   | OutputA              | 5   | Noninverting Input B | Die Size: 138 x 84 mils     |
| 2   | Inverting Input A    | 6   | Inverting Input B    | Bonding Pad Size: 5 x 5mils |
| 3   | Noninverting Input A | 7   | Output B             | Backside Contact: Gold      |
| 4   | Negative Supply      | 8   | Positive Supply      |                             |

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706 Tel: (602) 748-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (602) 889-1510 • Immediate Product Into: (600) 548-6132

PDS-578A

T-79-15

Very low bias current is obtained by dielectric isolation with on-chip guarding.

Laser trimming of thin film resistors gives very-low offset and drift. Extremely low noise is achieved with new circuit design techniques (patent pending). A new cascode design allows high precision input specifications and reduced susceptibility to flicker noise.

Standard dual op-amp pin configuration allows upgrading of existing designs to higher performance levels.

#### VISUAL

OPA211AD dice are visually inspected to MIL-STD-883, Method 2010, Test Condition B (AD, AD/LAT, SD, and MD-B) or Condition A (MD-S).

OPA211MD-S wafer lots are visually inspected to MIL-STD-883, Method 2018 (SEM Inspection of Metallization).

#### **PACKAGING**

Dice are packaged face-up in individually compartmented antistatic plastic carriers (waffle packs) and may be oriented for automated assembly. Carriers are heat-sealed in plastic bags with a dry atmosphere.

#### MARKING

Each die carrier is marked with:

- 1. Burr-Brown part number
- 2. Lot number
- 3. Wafer number
- 4. QA Seal and date
- 5. Quantity
- 6. QC identification number
- 7. Date code

If required, the customer part number and order number can be marked on each package.

### **SPECIFICATIONS**

### **ELECTRICAL PROBE LIMITS(1)**

 $T_{0ic} = +25$ °C and  $\pm V_{cc} = \pm 15$ VDC

|                                                                    | CONDITIONS                                                                                                                 | OPA2111AD/SD (1) |          |                 | OPA2111AD/LAT, MD-B, -S 17 |      |                  |                                     |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------|----------|-----------------|----------------------------|------|------------------|-------------------------------------|
| PARAMETERS                                                         |                                                                                                                            | MIN              | TYP      | MAX             | MIN                        | TYP  | MAX              | UNITS                               |
| OFFSET VOLTAGE Input Offset Voltage Average Drift Supply Rejection | V <sub>cu</sub> = 0VDC<br>T <sub>A</sub> = -25°C, +85°C<br>T <sub>A</sub> = -55°C, +125°C<br>±V <sub>cc</sub> = 12V to 18V | 84               | 5        | 500<br>10<br>10 | 80                         | 200  | 1000<br>15<br>15 | µV<br>µV/°С<br>µV/°С<br>µV/°С<br>фВ |
| BIAS CURRENT<br>Input Bias Current                                 | V <sub>cu</sub> = 0VDC, +25°C<br>T <sub>D:E</sub> = +85°C<br>T <sub>A</sub> = -55°C to +125°C                              |                  | ±2<br>±1 |                 |                            |      | ±15              | pA<br>nA<br>nA                      |
| VOLTAGE RANGE<br>Common-Mode Input Range<br>Common-Mode Rejection  | V <sub>N</sub> ±10VDC                                                                                                      | ±10<br>88        |          |                 | ±10<br>82                  |      |                  | V<br>dB                             |
| OPEN-LOOP GAIN, DC<br>Open-Loop Voltage Gain                       | R <sub>L</sub> = 2kΩ                                                                                                       | 105              |          |                 | 95                         |      |                  | dB                                  |
| RATED OUTPUT<br>Voltage Output<br>Short-Circuit Current            | P <sub>L</sub> ≥ 1kΩ                                                                                                       | ±11              |          |                 | ±10                        | ±60  |                  | V<br>mA                             |
| POWER SUPPLY<br>Quiescent Current                                  | l <sub>o</sub> = 0mA                                                                                                       |                  | ,        | ±9              |                            | ±4.5 |                  | mA                                  |

NOTES: (1) Electrical Probe Limits — All dice are 100% probe tested to the specification limits listed. Due to possible wafer saw and assembly shifts, parameters are not guaranteed for assembled units. (2) Guaranteed Limits — Specification Limits are guaranteed for a sample plan of 10<sup>th</sup> when die sample is prepared in the following manner: die attached with silver-filled glass (or solder) to a beryllium oxide or equivalent substrate, wheebonded with 4-mil (.004 inches) aluminum whee to the supplies and output, and 1-mil (.001 inches) aluminum whee to inputs and current limit pads. The unit must also be welded in a nitrogen atmosphere resulting in an internal water vapor content of less than 5,000ppm.

### **DIE PRODUCTS**

### **ABSOLUTE MAXIMUM RATINGS**

| Supply                           | ±18V       |
|----------------------------------|------------|
| Differential Input Voltage       |            |
| input Voitage Range              |            |
| Storage Temperature Range        |            |
| Output Short-Circuit Duration    | Continuous |
| Junction Temperature             | +175°C     |
| Lead Temperature (soldering 10s) | 300°C      |

### **ORDERING INFORMATION**

T-79-15

| Basic Model Number                                                                             | OPA2111       | (A, S, M)  | D (LAT, | -B, - |
|------------------------------------------------------------------------------------------------|---------------|------------|---------|-------|
| Grade Temperature Range A = -25°C to + 85°C                                                    |               |            |         |       |
| S = -55°C to +125°C<br>M = -55°C to +125°C                                                     |               |            |         |       |
| Package Code D = Die                                                                           |               | •          | J       |       |
| Screening Option  /LAT = Lot Acceptance Te -B = Milt-STD-883, Methor -S = Milt-STD-883, Methor | 1 5008, Class | B Compilar |         |       |