

## **Rochester Electronics Manufactured Components**

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

# **Quality Overview**

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
  - Class Q Military
  - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

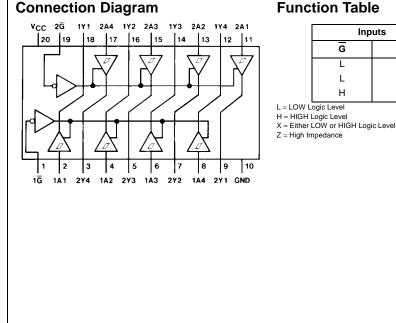
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

## FAIRCHILD

# **DM74LS244 Octal 3-STATE Buffer/Line Driver/Line Receiver**

#### **General Description**


#### **Features**

- 3-STATE outputs drive bus lines directly
- PNP inputs reduce DC loading on bus lines
- Hysteresis at data inputs improves noise margins
- Typical I<sub>OL</sub> (sink current) 24 mA
- Typical I<sub>OH</sub> (source current) –15 mA
- Typical propagation delay times Inverting 10.5 ns
  - Noninverting 12 ns
- Typical enable/disable time 18 ns Typical power dissipation (enabled) Inverting 130 mW
  - Noninverting 135 mW

#### **Ordering Code:**

| FAIRCHILD<br>SEMICONDUCTORTM<br>DM74LS244<br>Octal 3-STATE Buffe                                                                                                                                                                                                                                                                                                             | r/Line Driver/L                                                                                                                                                                                                                                            | August 1986<br>Revised March 2000                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>General Description</b><br>These buffers/line drivers are designed to im<br>performance and PC board density of 3-S<br>drivers employed as memory-address drive<br>ers, and bus-oriented transmitters/receivers.<br>mV of hysteresis at each low current PNP<br>they provide improved noise rejection and h<br>puts and can be used to drive terminated<br>133 $\Omega$ . | TATE buffers/<br>ers, clock driv-<br>Featuring 400<br>data line input,<br>igh fanout out-<br>lines down to PNP inp<br>Hystere<br>Typical   Typical<br>Invert<br>Nonir Typical<br>Invert<br>Typical   Typical<br>Invert<br>Nonir Typical<br>Invert<br>Nonir | UTES   ATE outputs drive bus lines directly   inputs reduce DC loading on bus lines   eresis at data inputs improves noise margins   sal loL (sink current) 24 mA   sal loH (source current) -15 mA   ad propagation delay times   retring 10.5 ns   ninverting 12 ns   sal enable/disable time 18 ns   sal power dissipation (enabled)   retring 130 mW   ninverting 135 mW |
| Ordering Code:                                                                                                                                                                                                                                                                                                                                                               | Pa                                                                                                                                                                                                                                                         | Package Description<br>d Circuit (SOIC), JEDEC MS-013, 0.300 Wide<br>(SOP), EIAJ TYPE II, 5.3mm Wide                                                                                                                                                                                                                                                                         |
| DM74LS244WM M20B 20-Le                                                                                                                                                                                                                                                                                                                                                       | ad Small Outline Integrated C                                                                                                                                                                                                                              | d Circuit (SOIC), JEDEC MS-013, 0.300 Wide                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                              | ead Small Outline Package (S                                                                                                                                                                                                                               | (SOP), EIAJ TYPE II, 5.3mm Wide                                                                                                                                                                                                                                                                                                                                              |

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.



#### **Function Table**

| Inputs |   | Output |
|--------|---|--------|
| G      | Α | Y      |
| L      | L | L      |
| L      | н | н      |
| н      | Х | Z      |

© 2000 Fairchild Semiconductor Corporation DS008442

### Absolute Maximum Ratings(Note 1)

| Supply Voltage                       | 7V                             |
|--------------------------------------|--------------------------------|
| Input Voltage                        | 7V                             |
| Operating Free Air Temperature Range | $0^{\circ}C$ to $+70^{\circ}C$ |
| Storage Temperature Range            | -65°C to +150°C                |

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## **Recommended Operating Conditions**

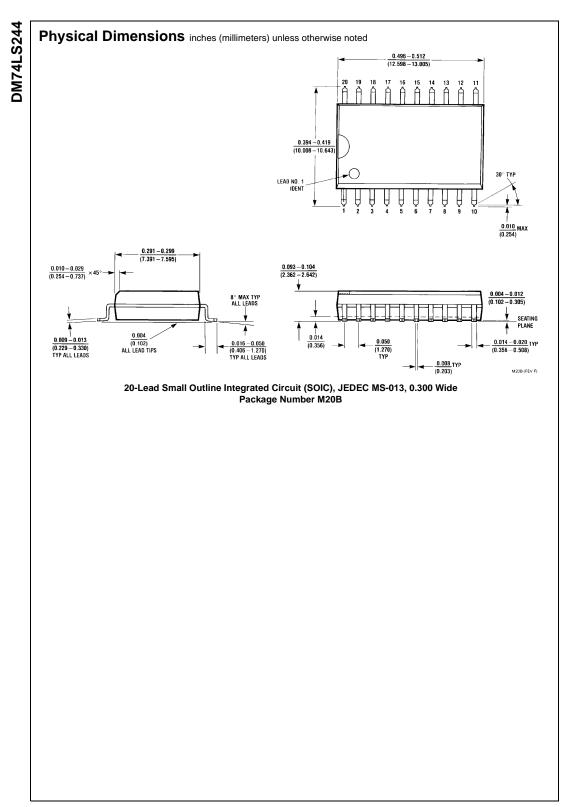
| Symbol          | Parameter                      | Min  | Nom | Max  | Units |
|-----------------|--------------------------------|------|-----|------|-------|
| / <sub>cc</sub> | Supply Voltage                 | 4.75 | 5   | 5.25 | V     |
| / <sub>IH</sub> | HIGH Level Input Voltage       | 2    |     |      | V     |
| V <sub>IL</sub> | LOW Level Input Voltage        |      |     | 0.8  | V     |
| ОН              | HIGH Level Output Current      |      |     | -15  | mA    |
| OL              | LOW Level Output Current       |      |     | 24   | mA    |
| Τ <sub>Α</sub>  | Free Air Operating Temperature | 0    |     | 70   | °C    |

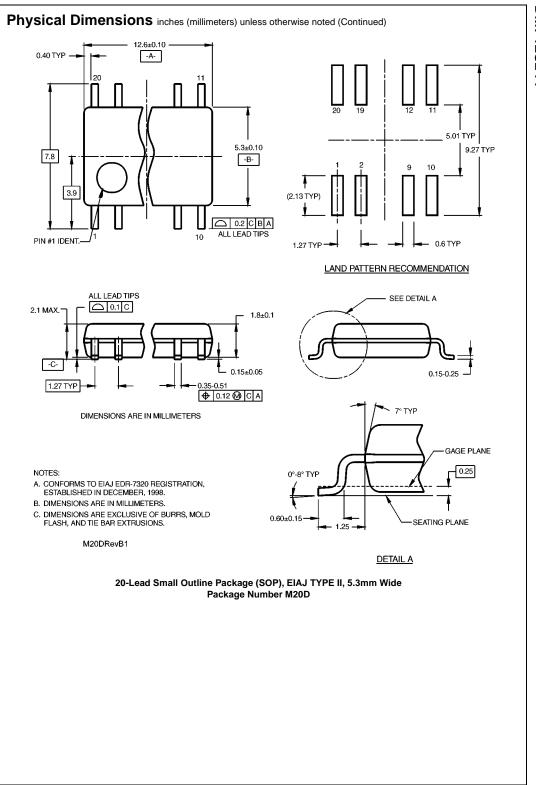
#### **Electrical Characteristics**

over recommended operating free air temperature range (unless otherwise noted)

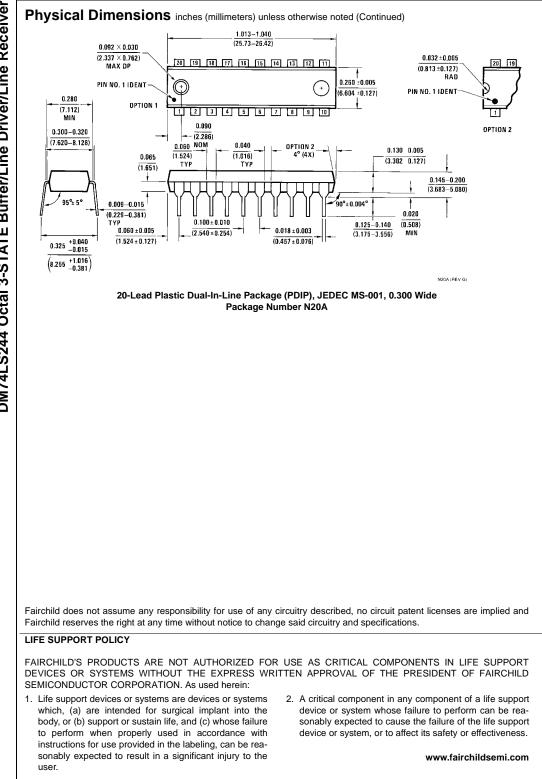
| Symbol           | Parameter                                                           | Conditi                                                        | ions                    | Min  | Typ<br>(Note 2) | Max  | Units |
|------------------|---------------------------------------------------------------------|----------------------------------------------------------------|-------------------------|------|-----------------|------|-------|
| VI               | Input Clamp Voltage                                                 | $V_{CC} = Min, I_I = -18 \text{ mA}$                           |                         |      |                 | -1.5 | V     |
| HYS              | Hysteresis (V <sub>T+</sub> – V <sub>T-</sub> )<br>Data Inputs Only | V <sub>CC</sub> = Min                                          |                         | 0.2  | 0.4             |      | V     |
| V <sub>OH</sub>  | HIGH Level Output Voltage                                           | $V_{CC} = Min, V_{IH} = Min$<br>$V_{IL} = Max, I_{OH} = -1 mA$ |                         | 2.7  |                 |      |       |
|                  |                                                                     | $V_{CC} = Min, V_{IH} = Min$<br>$V_{IL} = Max, I_{OH} = -3 mA$ |                         | 2.4  | 3.4             |      | v     |
|                  |                                                                     | $V_{CC} = Min, V_{IH} = Min$<br>$V_{IL} = 0.5V, I_{OH} = Max$  |                         | 2    |                 |      |       |
| V <sub>OL</sub>  | LOW Level Output Voltage                                            | V <sub>CC</sub> = Min                                          | I <sub>OL</sub> = 12 mA |      |                 | 0.4  |       |
|                  |                                                                     | V <sub>IL</sub> = Max<br>V <sub>IH</sub> = Min                 | I <sub>OL</sub> = Max   |      |                 | 0.5  | V     |
| I <sub>OZH</sub> | Off-State Output Current,<br>HIGH Level Voltage Applied             | V <sub>CC</sub> = Max<br>V <sub>IL</sub> = Max                 | V <sub>O</sub> = 2.7V   |      |                 | 20   | μA    |
| I <sub>OZL</sub> | Off-State Output Current,<br>LOW Level Voltage Applied              | V <sub>IH</sub> = Min                                          | $V_0 = 0.4V$            |      |                 | -20  | μA    |
| I <sub>I</sub>   | Input Current at Maximum<br>Input Voltage                           | V <sub>CC</sub> = Max                                          | V <sub>1</sub> = 7V     |      |                 | 0.1  | mA    |
| I <sub>IH</sub>  | HIGH Level Input Current                                            | V <sub>CC</sub> = Max                                          | V <sub>1</sub> = 2.7V   |      |                 | 20   | μA    |
| IIL              | LOW Level Input Current                                             | V <sub>CC</sub> = Max                                          | $V_{1} = 0.4V$          | -0.5 |                 | -200 | μA    |
| los              | Short Circuit Output Current                                        | V <sub>CC</sub> = Max (Note 3)                                 |                         | -40  |                 | -225 | mA    |
| I <sub>CC</sub>  | Supply Current                                                      | V <sub>CC</sub> = Max,                                         | Outputs HIGH            |      | 13              | 23   |       |
|                  |                                                                     | Outputs Open                                                   | Outputs LOW             |      | 27              | 46   | mA    |
|                  |                                                                     |                                                                | Outputs Disabled        |      | 32              | 54   |       |

Note 2: All typicals are at V\_{CC} = 5V, T\_A = 25^{\circ}C.


Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.


|                  | V, $T_A = 25^{\circ}C$           |                                      |     | 1     |
|------------------|----------------------------------|--------------------------------------|-----|-------|
| Symbol           | Parameter                        | Conditions                           | Max | Units |
| t <sub>PLH</sub> | Propagation Delay Time           | C <sub>L</sub> = 45 pF               | 18  | ns    |
|                  | LOW-to-HIGH Level Output         | $R_L = 667\Omega$                    | 10  |       |
| t <sub>PHL</sub> | Propagation Delay Time           | C <sub>L</sub> = 45 pF               | 18  | ns    |
|                  | HIGH-to-LOW Level Output         | $R_L = 667\Omega$                    | 10  |       |
| t <sub>PZL</sub> | Output Enable Time to            | le Time to C <sub>L</sub> = 45 pF 20 | 30  | ns    |
|                  | LOW Level                        | $R_L = 667\Omega$                    | 30  | ns    |
| t <sub>PZH</sub> | Output Enable Time to CL = 45 pF | 23                                   | ns  |       |
|                  | HIGH Level                       | $R_L = 667\Omega$                    | 25  | 115   |
| t <sub>PLZ</sub> | Output Disable Time              | C <sub>L</sub> = 5 pF                | 25  | ns    |
|                  | from LOW Level                   | $R_L = 667\Omega$                    | 25  |       |
| t <sub>PHZ</sub> | Output Disable Time              | C <sub>L</sub> = 5 pF                | 18  | ns    |
|                  | from HIGH Level                  | $R_L = 667\Omega$                    | 10  |       |
| t <sub>PLH</sub> | Propagation Delay Time           | C <sub>L</sub> = 150 pF              | 21  | ns    |
|                  | LOW-to-HIGH Level Output         | $R_L = 667\Omega$                    | 21  |       |
| t <sub>PHL</sub> | Propagation Delay Time           | C <sub>L</sub> = 150 pF              | 22  | ns    |
|                  | HIGH-to-LOW Level Output         | $R_L = 667\Omega$                    | 22  | 115   |
| t <sub>PZL</sub> | Output Enable Time to            | C <sub>L</sub> = 150 pF              | 33  | ns    |
|                  | LOW Level                        | $R_L = 667\Omega$                    | 33  |       |
| t <sub>PZH</sub> | Output Enable Time to            | C <sub>L</sub> = 150 pF              | 26  | ns    |
|                  | HIGH Level                       | $R_{L} = 667\Omega$                  | 20  |       |

DM74LS244


www.fairchildsemi.com

3





DM74LS244



DM74LS244 Octal 3-STATE Buffer/Line Driver/Line Receiver