- Similar to 'AS574 and 'AS576 with Clock Enable, Clear, and Multiple Output Controls
- Improved IOH Specifications
- Multiple Output Enables Allow Multiuser Control of the Interface
- Outputs Have Undershoot Protection Circuitry
- Power-Up High-Impedance State
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Buffered Control Inputs to Reduce DC Loading Effect
- Dependable Texas Instruments Quality and Reliability

description

These 8-bit flip-flops feature three-state outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. They are particularly suitable for implementing multiuser registers, I/O ports, bidirectional bus drivers, and working registers.

With the clock enable (CLKEN) low, the eight D-type edge-triggered flip-flops enter data on the low-to-high transitions of the clock. Taking CLKEN high will disable the clock buffer, thus latching the outputs. The 'AS825 has noninverting D inputs and the 'AS826 has inverting D inputs. Taking the CLR input low causes the eight Q outputs to go low independently of the clock.

A multiuser buffered output-control input can be used to place the eight outputs in either a normal logic state (high or low levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive the bus lines in a bus-organized system without need for interface or pull-up components.

SN54AS825 . . . JT PACKAGE SN74AS825 . . . NT PACKAGE

(TOP VIEW) (TOP VIEW) 1D 22 10 20 21 20 3D | 20 30 40 I 5D 18 T 5Q 6D 17 🗍 60 16 70 70 [8D [10 15 N BQ 14 CLKEN CER []11 GND II12 13 CLK

SN54AS825 . . . FH PACKAGE SN74AS825 . . . FN PACKAGE

(TOP VIEW)


SN54AS826 . . . JT PACKAGE SN74AS826 . . . NT PACKAGE

(TOP VIEW)

SN54AS826 . . . FH PACKAGE SN74AS826 . . . FN PACKAGE

(TOP VIEW)

NC-No internal connection

Copyright © 1983 by Texas Instruments Incorporated

83

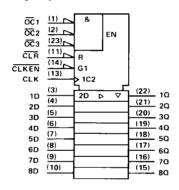
2

LS AND AS CIRCUITS

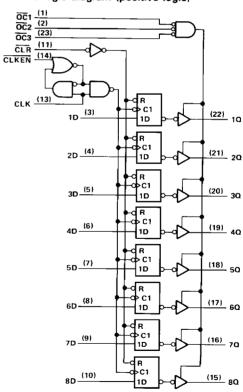
The output controls ($\overline{OC}1$, $\overline{OC}2$, and $\overline{OC}3$) do not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The SN54AS825 and SN54AS826 are characterized for operation over the full military temperature range of $-55\,^{\circ}\text{C}$ to 125 $^{\circ}\text{C}$. The SN74AS825 and SN74AS826 are characterized for operation from 0 $^{\circ}\text{C}$ to 70 $^{\circ}\text{C}$.

'AS825

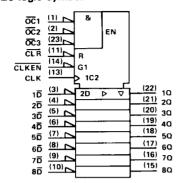

	OUTPUT				
oc.	CLR	CLKEN	CLK	D	α
L	L	Х	Х	X	L
L	Н	L	†	н	н
L	Н	L	†	L	н
L	Н	н	х	х	α_0
н	X	×	х	Х	z

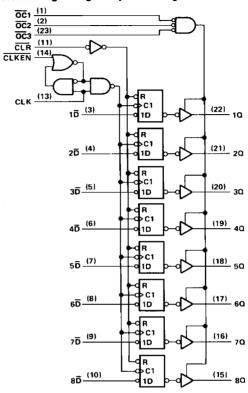
 $\overrightarrow{OC} \cdot = \overrightarrow{OC}1 \cdot \overrightarrow{OC}2 \cdot \overrightarrow{OC}3$


'AS826

	OUTPUT				
oc∗	CLR	CLKEN	CLK	Ď	a
	L	X	Х	X	L
L	Н	L	†	Н	L
L	н	L	†	L	н
L	н	н	X	Х	αo
н	X	Х	<u> </u>	Х	Z

'AS825 logic symbol


'AS825 logic diagram (positive logic)


Pin numbers shown are for JT and NT packages

ALS AND AS CIRCUITS

'AS826 logic symbol

'AS826 logic diagram (positive logic)

Pin numbers shown are for JT and NT packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC			
Input voltage			7 V
Voltage applied to a disabled 3-state			
Operating free-air temperature range:	SN54AS825,	SN54AS826	– 55°C to 125°C
			0°C to 70°C
Storage temperature range			- 65 to 150°C

recommended operating conditions

		•	I	N54AS825 N54AS826		SN74AS825 SN74AS826			UNIT
	<u>. </u>		MIN	NOM	MAX	MIN	NOM	MAX	
VÇÇ	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input volta	ge	2			2			V
VIL	Low-level input volta	ge	- 1		0.8			0.8	V
ЮН	High-level output cur	rent			- 24			- 24	mA
loL	Low-level output current				32			48	mA
fclock	Clock frequency						_		MHz
	Pulse duration	CLR low							ns
		CLK high							
tw		CLK low							
		CLKEN							
	Setup time	CLR inactive							
t _{su}		Data			_				ns
	before CLK †	CLKEN					-		1
th	Hold time, data after CLK↑								ns
TA	Operating free-air temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

2

ALS AND AS CIRCUITS

PARAMETER		TEST CONDITIONS		SN54AS825 SN54AS826			SN74AS825 SN74AS826			
		TEST CONDITIONS		MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT
Vικ		V _{CC} = 4.5 V,	I _I = -18 mA			- 1.2			-1.2	V
		$V_{CC} = 4.5 \text{ V to 5}.$	5 V, I _{OH} = -2 mA	Vcc-	2		V _{CC} -2			
VOH		$V_{CC} = 4.5 \text{ V},$	I _{OH} = -15 mA	2.4	3.2	-	2.4	3.2		v
		$V_{CC} = 4.5 \text{ V},$	I _{OH} = -24 mA	2		_	2			
VOL		$V_{CC} = 4.5 V$	I _{OL} ≃ 32 mA		0.25	0.5				
*OL		$V_{CC} = 4.5 V$	I _{OL} = 48 mA					0.25	0.5	V
IOZH		$V_{CC} = 5.5 \text{ V},$	V _O = 2.7 V			50			50	μА
lozL		$V_{CC} = 5.5 \text{ V},$	V _O = 0.4 V			- 50		_	- 50	μA
lj .		$V_{CC} = 5.5 \text{ V},$	V _I = 7 V					_		mA
ļН		$V_{CC} = 5.5 \text{ V},$	V _I = 2.7 V					_	-	μА
IIL.		V _{CC} = 5.5 V,	V _I = 0.4 V							mA
lo‡		V _{CC} = 5.5 V,	V _O = 2.25 V	-30		-112	- 30		-112	mA
			Outputs high							
	'AS825	$V_{CC} = 5.5 \text{ V}$	Outputs low							· i mA
			Outputs disabled		58			58		1
Icc	AS826	'AS826 V _{CC} = 5.5 V	Outputs high							
			Outputs low							mA
			Outputs disabled	\neg	58			58		

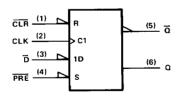
 $^{^{\}dagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25 ^{\circ}\text{C}$.

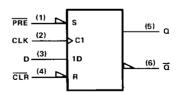
Additional information on these products can be obtained from the factory as it becomes available.

[‡]The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, los-

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	CL = 50 R1 = 50 R2 = 50	0 Ω,	UNIT		
			SN54AS825				
	1		SN54AS826	SN74AS826	4 I		
			MIN TYPT MA	AX MIN TYP [†] MAX			
f _{max}					MHz		
t _{PLH}	CLK	Any Q	7.5	7.5	ns		
tPHL	CLK	Arry d	9.5	9.5	,		
^t PHL	CLR	Any Q	11	11	ns		
^t PZH	оc	Any Q	6	6	ns		
tpZL	1 66	Ally G	7	7	113		
tpHZ	ōc	Any Q 6 6		6	ns		
tPLZ	1		7	7	,,,		


[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C. NOTE 1: For load circuit and voltage waveforms, see page 1-12.


D flip-flop signal conventions

It is normal TI practice to name the outputs and other inputs of a D-type flip-flop and to draw its logic symbol based on the assumption of true data (D) inputs. Then outputs that produce data in phase with the data inputs are called Q and those producing complementary data are called $\bar{\mathbf{Q}}$. An input that causes a Q output to go high or a \overline{Q} output to go low is called Preset; an input that causes a \overline{Q} output to go high or a Q output to go low is called Clear. Bars are used over these pin names (PRE and CLR) if they are active-low.

The devices on this data sheet are second-source designs and the pin-name convention used by the original manufacturer has been retained. That makes it necessary to designate the inputs and outputs of the inverting circuit D and Q. In some applications it may be advantageous to redesignate the inputs and outputs as D and $\overline{\Omega}$. In that case, outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbol. Arbitrary pin numbers are shown in parentheses.

Notice that Q and \overline{Q} exchange names, which causes Preset and Clear to do likewise. Also notice that the polarity indicators () on PRE and CLR remain since these inputs are still active-low, but that the presence or absence of the polarity indicator changes at \overline{D} , Q, and \overline{Q} . Of course pin 5 (Q) is still in phase with the data input D, but now both are considered active high.

