

Single Wide Bandwidth Analog Switch

Features

- Single-Supply Operation (+2V to +6V)
- Rail-to-Rail Analog Signal Dynamic Range
- Low On-Resistance (6-Ohm typical with 5V supply) Minimizes Distortion and Error Voltages
- On-Resistance Flatness, 3-Ohm typical
- Low Charge Injection Reduces Glitch Errors. Q = 4pC (typical)
- · Replaces Mechanical Relays
- High Speed: t_{ON} = 10ns typical
- Wide –3dB Bandwidth: 300 MHz (typical)
- High-Current Channel Capability:>100mA
- TTL/CMOS Logic Compatible
- Low Power Consumption (0.5 µW typical)
- Small outline transistor package minimizes board area -65 mil wide SOT23-5 (T5)

Applications

- Audio, Video Switching and Routing
- Battery-Powered Communication Systems
- Computer Peripherals
- · Telecommunications
- · Portable Instrumentation
- · Mechanical Relay Replacement
- · Cell Phones
- PDAs

Truth Table

OE	PI5A125
0	ON
1	OFF

Switch shown for Logic "0" input

Description

1

The PI5A125 is a single analog switch designed for single-supply operation. This high-precision device is ideal for low-distortion audio, video, signal switching and routing.

The PI5A125 is a single-pole single-throw (SPST), normally closed (NC) switch. The switch is open when \overline{OE} is HIGH.

This switch conducts current equally well in either direction when on. When off, it blocks voltages up to V_{CC} .

The PI5A125 is fully specified with +5V, and +3.3V supplies. With +5V, it guarantees < 10-ohms ON-resistance. ON-resistance flatness is less than 5-ohms over the specified range. The switch also guarantees fast switching speeds (toN <20ns).

This product is available in a 5-pin SOT23 plastic package for operation over the industrial (-40°C to +85°C) temperature range.

Functional Diagram, Pin Configuration

Electrical Specifications - Single +5V Supply ($V_{CC} = +5V \pm 10\%$, GND = 0V, $V_{INH} = 2.4V$, $V_{INL} = 0.8V$)

Description	Parameter	Conditions	Temp. (°C)	Min. ⁽²⁾	Typ.(1)	Max. ⁽²⁾	Units	
Analog Switch				!				
Analog Signal Range (3)	V _{ANALOG}		Full	0		Vcc	V	
On-Resistance	R _{ON}	$V_{CC} = 4.5V$, $I_{B} = -30$ mA, $V_{A} = +2.5V$	25		8	10	Ω	
			Full			18		
(5)		$V_{CC} = 5V$, $I_B = -30$ mA,	25		2.5	3.5		
On-Resistance Flatness ⁽⁵⁾	R _{FL} AT(ON)	$V_A = 1V, 2.5V, 4V$	Full			4		
Off1 (6)	I _{A(OFF)} or	$V_{CC} = 5.5 V_{,} V_{B} = 0 V_{,}$	25		0.20			
Off Leakage Current ⁽⁶⁾	I _{B(OFF)}	$V_A = 4.5V$	Full	-80		80		
On Leelees Comment(6)	I _{A(ON)} or	V+ = 5.5V,	25		0.20		- nA	
On Leakage Current ⁽⁶⁾	I _{B(ON)}	$V_{\rm B} = V_{\rm A} = +4.5V$	Full	-80		80		
Logic Input							•	
Input High Voltage	V _{IH}	Guaranteed Logic High Level	Full	2			3.7	
Input Low Voltage	V _{IL}	Guaranteed Logic Low Level				0.8	V	
Input Current with Input Voltage High	I_{INH}	V_{IN} =2.4V, all others = 0.8V			0.005	1	μА	
Input Current with Input Voltage Low	I_{INL}	V_{IN} =0.8V, all others = 2.4V		-1				
Dynamic							•	
T. 0 T.			25		7	15		
Turn-On Time	Furn-On Time toN	$V_{CC} = 5V$, see Figure 1	Full			20		
T. OWT		V - 2V - E' - 2	25		1	7	nc	
Turn-Off Time	$t_{ m OFF}$	$V_{COM} = \pm 3V$, see Figure 2	Full		2	5		
Charge Injection (3)	Q	$C_L = 1 \text{nF}, V_{GEN} = 0 \text{V},$ $R_{GEN} = 0 \Omega$, see Figure 2				10	pC	
Off Isolation	OIRR	$R_L = 50\Omega$, $C_L = 5pF$, f = 10 MHz, see Figure 3	25				dB	
A or B Off Capacitance	C _(OFF)	f = 1kHz, see Figure 4			5.5		- pF	
On Capacitance	C _(ON)	f = 1kHz, see Figure 5			5.5			
-3dB Bandwidth	BW	$R_L = 50\Omega$, see Figure 6			300		MHz	
Supply			1					
Power-Supply Range	V _{CC}			2		6	V	
Positive Supply Current	I_{CC}	$V+=5.5V$, $V_{\rm IN}=0V$ or $V_{\rm CC}$, All channels on or off	Full			1	μА	

2

Absolute Maximum Ratings

Voltages Referenced to GND	
V _{CC} 0.5V to+	·7V
$V_{OE}, V_A, V_B{}^{(1)}$ 0.5V to V_{CC} +	2V
or 30mA, whichever occurs f	ĭrst
Current (any terminal except A, B)	mΑ
Current: A,B (pulsed at 1ms, 10% duty cycle) 120	mΑ

Thermal Information

Continuous Power Dissipation	
SOT23-5 (derate 7mW/°C above +70°C)	550mW
Storage Temperature65°C to	+150°C
Lead Temperature (soldering, 10s)	+300°C

Note 1:

Signals on \overline{OE} , A, B exceeding Vcc or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications-Single +3.3V Supply $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$

Parameter	Symbol	Conditions	Temp(°C)	Min.(1)	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V _{CC}	V
On-Resistance	D	V2V I 20mA V -15V	25		12	18	
	R _{ON}	$V_{CC} = 3V$, $I_B = -30mA$, $V_A = 1.5V$	Full			28	Ω
On-Resistance Flatness ^(3,5)	R _{FLAT(ON)}	$V_{CC} = 3.3V$, $I_B = -30mA$,	25		0.5	4	
	$V_A = 0.8V, 2.5V$	$V_A = 0.8V, 2.5V$	Full			5	
Dynamic							
Turn-On Time	t_{ON} $V_{CC} = 3.3 V$ to V_{NO}		25		15	25	
Turn-On Time		Full			40		
Turn-Off Time	toff	or VNC = 1.5V, Fig.1	25		1.5	12	ns
			Full			20	
Charge Injection ⁽³⁾	Q	$C_L = 1$ nf, $V_{GEN} = 0$ V, $R_{GEN} = 0$ V, Fig.2	25		1.3	10	рC
Supply							
I_{CC}	Positive Supply Current	$V_{CC} = 3.6V$, $V_{IN} = 0V$ or V_{CC} All channels on or off	Full			1	μА

Notes:

1. The algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.

3

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design
- 4. $\Delta R_{ON} = R_{ON} \max R_{ON} \min$
- 5. Flatness is defined as the difference between the maximum and minimum value of on-resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 7. Off Isolation = $20\log_{10} V_B / V_A$. See Figure 3.

Test Circuits/Timing Diagrams

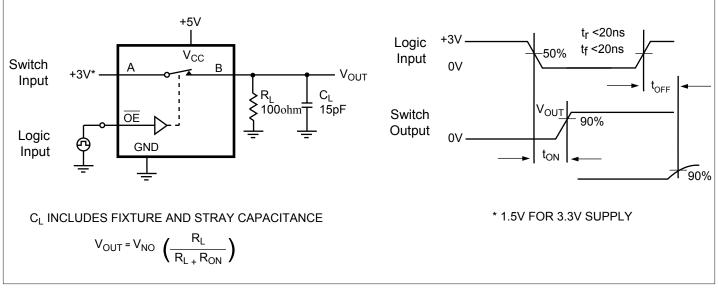


Figure 1. Switching Time

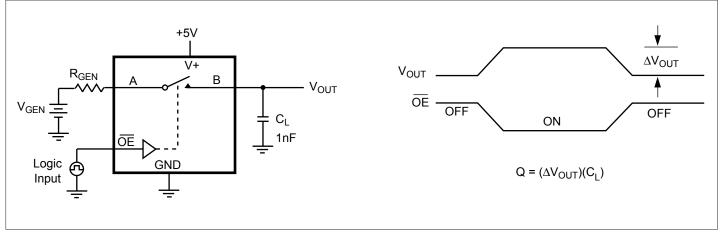


Figure 2. Charge Injection

4

Test Circuits/Timing Diagrams (continued)

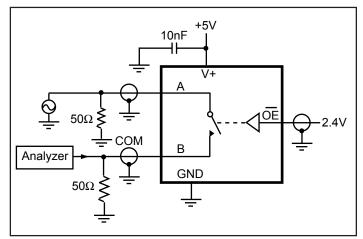


Figure 3. Off Isolation

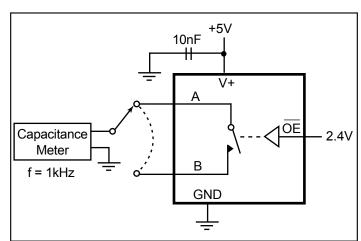


Figure 4. Channel-Off Capacitance

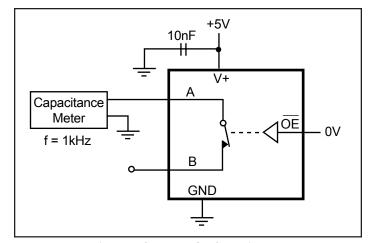
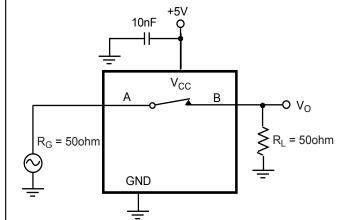
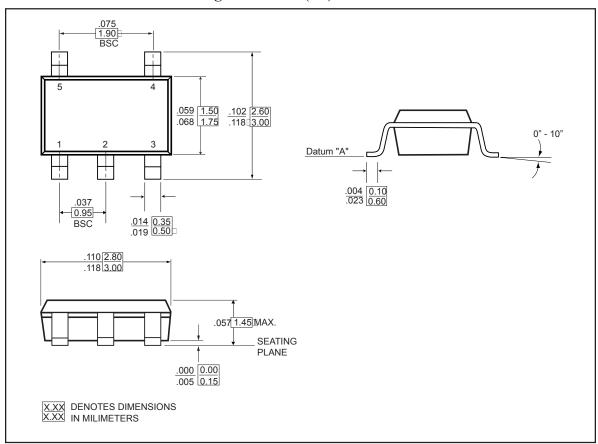


Figure 5. Channel-On Capacitance




Figure 6. Bandwidth

PS8199E 11/27/02

5

Small Outline Transistor Package - SOT23-5 (T5)

Ordering Information

P/N	Package		
PI5A125TX	SOT23-5		