CD74LCX16374 December 1997 ## Fast CMOS 3.3V 16-Bit Register (Three-State) #### **Features** - · Advanced 0.6 micron CMOS Technology - · 5V Tolerant Inputs and Outputs - · Supports Live Insertion of PCBs - 2.0V to 3.6V V_{CC} Supply Range - Balanced 24mA Output Drive - · Low Ground Bounce Outputs - · ESD Protection Exceeds 2000V, HBM; 200V, MM - Functionally Compatible with FCT3, LVC, LVT, and 74 Series Logic Families ## Ordering Information | PART NUMBER | TEMP.
RANGE (^O C) | PACKAGE | PKG.
NO. | |----------------|----------------------------------|-------------|-------------| | CD74LCX16374MT | -40 to 85 | 48 Ld TSSOP | M48.240-P | | CD74LCX16374SM | -40 to 85 | 48 Ld SSOP | M48.300-P | ### Description The CD74LCX16374 is a 16-bit octal register designed with 16 D-type flip-flops with a buffered common clock and three-state outputs. The Output Enable ($_{X}\overline{\text{OE}}$) and clock ($_{X}\text{CLK}$) controls are organized to operate as two 8-bit registers or one 16-bit register. When $\overline{\text{OE}}$ is HIGH, the outputs are in the high impedance state. Input data meeting the setup and hold time requirements of the D inputs is transferred to the O outputs on the LOW-to-HIGH transition of the clock input. The CD74LCX16374 can be driven from either 3.3V or 5.0V devices allowing this device to be used as a translator in a mixed 3.3/5.0V system. #### **Pinout** # Functional Block Diagram TRUTH TABLE (NOTE 1) | | | OUTPUTS | | | |----------|-----|------------------|-----|-----| | FUNCTION | χDχ | _X CLK | XOE | хОх | | High-Z | Х | L | Н | Z | | | Х | Н | Н | Z | | Load | L | ↑ | L | L | | Register | Н | ↑ | L | Н | | | L | ↑ | Н | Z | | | Н | ↑ | Н | Z | # Pin Descriptions | PIN NAME | DESCRIPTION | | | | | | |------------------|---|--|--|--|--|--| | XOE | Three-State Output Enable Inputs (Active LOW) | | | | | | | XCLK | Clock Inputs | | | | | | | X^DX | Data Inputs | | | | | | | χ ^O χ | Three-State Outputs | | | | | | | GND | Ground | | | | | | | V _{CC} | Power | | | | | | #### NOTE: - 1. H = High Voltage Level - L = Low Voltage Level - X = Don't Care - Z = High Impedance ↑ = LOW-to-HIGH Transition #### CD74LCX16374 #### **Absolute Maximum Ratings** Thermal Information DC Input Voltage-0.5V to 7.0V θ_{JA} (°C/W) Thermal Resistance (Typical, Note 2) TSSOP Package 94 76 **Operating Conditions** Temperature Range -40°C to 85°C Maximum Storage Temperature Range-65°C to 150°C Supply Voltage to Ground Potential Maximum Lead Temperature (Soldering 10s)......300°C Inputs and V_{CC} Only. -0.5V to 7.0V (Lead Tips Only) Supply Voltage, V_{CC} Data Retention 1.5V (Min), 3.6V (Max) Supply Voltage to Ground Potential Outputs and D/O Only.....-0.5V to 7.0V CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. #### NOTE: 2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air. #### **Electrical Specifications** | PARAMETER | SYMBOL | (NO
TEST CO | MIN | (NOTE 4)
TYP | MAX | UNITS | | |---|------------------|---|--|--------------------------|------|--------------|----| | DC ELECTRICAL SPECIF | ICATIONS | Over the Operating Range | $_{\rm t}$, $T_{\rm A}$ = -40 $^{\rm o}$ C to 85 $^{\rm o}$ C, $V_{\rm C0}$ | _C = 2.7V to 3 | .6V | | | | Input HIGH Voltage | V _{IH} | Guaranteed Logic HIGH Level | | 2.0 | - | - | ٧ | | Input LOW Voltage
(Input and I/O Pins) | V _{IL} | Guaranteed Logic LOW Level | | - | - | 8.0 | ٧ | | Output HIGH Voltage | V _{OH} | V _{CC} = 2.7V to 3.6V | I _{OH} = -0.1mA | V _{CC} - 0.2 | - | = | ٧ | | | | V _{CC} = 2.7V | I _{OH} = -12mA | 2.2 | - | = | ٧ | | | | V _{CC} = 3.0V | I _{OH} = -18mA | 2.4 | - | - | ٧ | | | | | I _{OH} = -24mA | 2.2 | - | - | ٧ | | Output LOW Voltage | V _{OL} | V _{CC} = 2.7V to 3.6V | I _{OL} = 0.1mA | - | - | 0.2 | ٧ | | | | V _{CC} = 2.7V | I _{OL} = 12mA | - | - | 0.4 | ٧ | | | | V _{CC} = 3V | I _{OL} = 16mA | - | - | 0.4 | ٧ | | | | | I _{OL} = 24mA | - | - | 0.55 | ٧ | | Clamp Diode Voltage | V _{IK} | V _{CC} = Min, I _{IN} = -18mA | | - | -0.7 | -1.2 | ٧ | | Input Current | l _l | $V_{CC} = 2.7V \text{ to } 3.6V$ $0 \le V_{I} \le 5.5V$ | | - | - | ±5 | μΑ | | High Impedance Output
Current (Three-State) | loz | V_{CC} = 2.7V to 3.6V $0 \le V_O \le 5.5V$ $V_I = V_{IH}$ or V_{IL} | | - | - | ±5 | μΑ | | Power Down Disable | l _{OFF} | V _{CC} = 0V | V _{IN} or V _{OUT} ≤ 5.5V | - | - | 10 | μΑ | | Quiescent Power
Supply Current | lcc | V _{CC} = Max | V_{IN} = GND or V_{CC} | - | 0.1 | 10 | μΑ | | Quiescent Power Supply
Current TTL Inputs HIGH | Δl _{CC} | V _{CC} = Max | V _{IN} = V _{CC} - 0.6V
(Note 5) | - | - | 500 | μА | | CAPACITANCE | • | | | • | • | | | | Input Capacitance
(Note 6) | C _{IN} | V _{CC} = Open, V _{IN} = 0V or V _{CC} | | - | 7 | - | pF | | Output Capacitance
(Note 6) | C _{OUT} | V_{CC} = 3.3V, V_{IN} = 0V or V_{CC} | | - | 8 | - | pF | | Power Dissipation
Capacitance (Note 7) | C _{PD} | V_{CC} = 3.3V, V_{IN} = 0V or V_{CC} , f = 10MHz | | - | 20 | - | pF | #### **Switching Specifications Over Operating Range** | | | TEST | $V_{CC} = 3.3V \pm 0.3V$ | | V _{CC} = 2.7V | | | |---------------------------------|-------------------------------------|-------------------------------|--------------------------|-----|------------------------|-----|-------| | PARAMETER | SYMBOL | CONDITIONS | MIN | MAX | MIN | MAX | UNITS | | Maximum Clock Frequency | f _{MAX} | $C_L = 50pF, R_L = 500\Omega$ | 170 | - | - | - | MHz | | Propagation Delay, CP to ON | t _{PHL} , t _{PLH} | $C_L = 50pF, R_L = 500\Omega$ | 1.5 | 6.2 | 1.5 | 6.5 | ns | | Output Enable Time | t _{PZL} , t _{PZH} | $C_L = 50pF, R_L = 500\Omega$ | 1.5 | 6.1 | 1.5 | 6.3 | ns | | Output Disable Time (Note 10) | t _{PLZ} , t _{PHZ} | $C_L = 50pF, R_L = 500\Omega$ | 1.5 | 6.0 | 1.5 | 6.2 | ns | | Setup Time | ts | $C_L = 50pF, R_L = 500\Omega$ | 2.5 | - | 2.5 | - | ns | | Hold Time | t _H | $C_L = 50pF, R_L = 500\Omega$ | 1.5 | - | 1.5 | - | ns | | Pulse Width (Note 10) | t _W | $C_L = 50pF, R_L = 500\Omega$ | 3.0 | - | 3.0 | - | ns | | Output to Output Skew (Note 11) | tsk(0) | $C_L = 50pF, R_L = 500\Omega$ | - | 1.0 | - | - | ns | ## **Dynamic Switching Characteristics** $T_A = 25^{\circ}C$ | PARAMETER | SYMBOL | (NOTE 12)
TEST CONDITIONS | TYP | UNITS | |----------------------------|------------------|--|-----|-------| | Dynamic LOW Peak Voltage | V _{OLP} | $V_{CC} = 3.3V$, $C_L = 50pF$, $V_{IH} = 3.3V$, $V_{IL} = 0V$ | 0.8 | ٧ | | Dynamic LOW Valley Voltage | V _{OLV} | $V_{CC} = 3.3V$, $C_L = 50pF$, $V_{IH} = 3.3V$, $V_{IL} = 0V$ | 0.8 | ٧ | #### NOTES: - 3. For conditions shown as Max or Min, use appropriate value specified under Electrical Specifications for the applicable device type. - 4. Typical values are at V_{CC} = 3.3V, 25°C ambient and maximum loading. - 5. Per TTL driven input; all other inputs at V_{CC} or GND. - 6. This parameter is determined by device characterization but is not production tested. - 7. C_{PD} determines the no-load dynamic power consumption per latch. It is obtained by the following relationship: P_D (total power per latch) = V_{CC}² f_i (C_{PD} + C_L) where f_i = input frequency, C_L = output load capacitance, V_{CC} = supply range. - 8. See test circuit and waveforms. - 9. Minimum limits are guaranteed but not tested on Propagation Delays. - 10. This parameter is guaranteed but not production tested. - 11. Skew between any two outputs, of the same package, switching in the same direction. This parameter is guaranteed by design. - 12. Measured with n-1 outputs switching from High-to-Low or Low-to-High. The remaining output is measured in the LOW state.