P54/74FCT157T/AT/CT P54/74FCT158T/AT/CT DATA SELECTOR/MULTIPLEXER ## **FEATURES** - Function, Pinout and Drive Compatible with the FCT and F Logic - FCT-C speed at 4.3ns max. (Com'i) FCT-A speed at 5.0ns max. (Com'i) - Reduced V_{OH} (typically = 3.3V) versions of Equivalent FCT functions - Edge-rate Control Circuitry for Significantly Improved Noise Characteristics - ESD protection exceeds 2000V - Power-off disable feature - Matched Rise and Fall times - Fully Compatible with TTL Input and Output Logic Levels - 64 mA Sink Current (Com'l), 32 mA (Mil) 15 mA Source Current (Com'l), 12 mA (Mil) - Manufactured in 0.7 micron PACE Technology™ #### DESCRIPTION The 'FCT157T and 'FCT158T are quad 2-input multiplexers which select 4 bits of data from two sources under the control of a common data Select input (S). The Enable input (\overline{E}) is active-low. When \overline{E} is HIGH, all of the inputs (Y) are forced LOW regardless of all other input conditions. Moving data from two groups of registers to four common output busses is a common use of the 'FCT157T and 'FCT158T. The state of the Select input determines the particular register from which the data comes. It can also be used as a function generator. The device is useful for implementing highly irregular logic by generating any four of the 16 different functions of two variables with one variable common. These devices are logic implementation of a 4-pole, 2 position switch where the position of the switch is determined by the logic levels supplied to the Select input. The outputs of the 'FCT157T are Non-Inverting whereas the 'FCT158T has inverting outputs. The 'FCT157T/158T is manufactured using PACE TechnologyTM which is **P**erformance **A**dvanced **C**MOS Engineered to use 0.7 micron effective channel lengths giving 400 picoseconds loaded* internal gate delays. Pace Technology includes two-level metal and epitaxial substrates. In addition to very high performance and very high density, the technology features latch-up protection, single event upset protection, and is supported by a Class 1 environment volume production facility. *For a fan-in/fan-out of 4, at 85°C junction temperature and 5.0V. ## **FUNCTIONAL BLOCK DIAGRAM** Means Quality, Service and Speed ## PIN CONFIGURATIONS ## PIN CONFIGURATIONS ## LOGIC SYMBOL ## LOGIC SYMBOL # 7 ## **ABSOLUTE MAXIMUM RATINGS^{1,2}** | Symbol | Parameter | Value | Unit | |------------------|-------------------------------------|--------------|------| | T _{STG} | Storage Temperature | -65 to +150 | °C | | TA | Ambient Temperature
Under Bias | -65 to +135 | °C | | V _{cc} | V _{cc} Potential to Ground | -0.5 to +7.0 | ٧ | | P _T | Power Dissipation | 0.5 | w | 1738 Tbl 01 #### Notes: Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range. | Symbol | Parameter | Value | Unit | |---------------------|---------------------------|--------------|------| | I _{OUTPUT} | Current Applied to Output | 120 | mA | | VIN | Input Voltage | -0.5 to +7.0 | V | | V _{OUT} | Voltage Applied to Output | -0.5 to +7.0 | ٧ | 1738 Tbl 02 Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{cc} or ground. ## RECOMMENDED OPERATING CONDITIONS | Free Air Ambient Temperature | Min | Max | |------------------------------|-------|--------| | Military | -55°C | +125°C | | Commercial | 0°C | +70°C | 1738 Tbl 03 | Supply Voltage (V _{cc}) | Min | Max | |-----------------------------------|--------|--------| | Military | +4.5V | +5.5V | | Commercial | +4.75V | +5.25V | 1738 Tbl 04 ## DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions) | Symbol | Paramete | Min | Typ¹ | Max | Units | V _{cc} | Conditions | | |------------------|---|------------------------|------------|-------------------|-------------------|-----------------|-------------------|---| | V _{IH} | Input HIGH Voltage | 2.0 | | | V | | | | | V _{IL} | Input LOW Voltage | | | | 0.8 | V | - | | | V _H · | Hysteresis | | | 0.2 | | ٧ | | All inputs | | V _{IK} | Input Clamp Diode Voltage | | | -0.7 | -1.2 | ٧ | MIN | I _{IN} = -18mA | | V _{OH} | Output HIGH
Voltage | Military
Commercial | 2.4
2.4 | 3.3
3.3 | | V
V | MIN | I _{OH} = -12mA
I _{OH} = -15mA | | V _{oL} | Output LOW Military Voltage Commercial Commercial | | | 0.3
0.3
0.3 | 0.5
0.5
0.5 | > | MIN
MIN
MIN | | | Į, | Input HIGH Current | | | | 20 | μА | MAX | V _{IN} = V _{CC} | | I _{IH} | Input HIGH Current | | | | 5 | μА | | V _{IN} = 2.7V | | l _{iL} | Input LOW Current | | | | -5 | μА | MAX | | | l _{ozh} | Off State I _{OUT} HIGH-Level Output | Current | | | 10 | μА | MAX | V _{OUT} = 2.7V | | l _{ozL} | Off State I _{OUT} LOW-Level Output | Current | | | -10 | μА | MAX | | | los | Output Short Circuit Current ² | | -60 | -120 | -225 | mA | MAX | V _{OUT} = 0.0V | | l _{off} | Power-off Disable | Power-off Disable | | | 100 | μА | ٥V | V _{OUT} = 4.5V | | CiN | Input Capacitance ³ | | 5 | 10 | рF | MAX | All inputs | | | Соит | Output Capacitance ³ | | 9 | 12 | pF | MAX | All outputs | | | I _{cc} | Quiescent Power Supply Current | | | 0.2 | 1.5 | mA | MAX | V _{IN} ≤ 0.2V,
V _{IN} ≥V _{CC} -0.2V | #### 1738 Tbl 05 ### Notes: - 1. Typical limits are at $V_{cc} = 5.0V$, $T_A = +25^{\circ}C$ ambient. - Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect - operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, Ios tests should be performed last. - 3. This parameter is guaranteed but not tested. 7-173 ## DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.) | Symbol | Parameter | Typ.¹ | Max. | Units | Conditions | |------------------|--|-------|------|------------|--| | Δl _{cc} | Quiescent Power Supply
Current (TTL inputs) | 0.5 | 2.0 | mA | $V_{CC} = MAX$, $V_{IN} = 3.4V^2$, $f_1 = 0$, Outputs Open | | 1 _{CCD} | Dynamic Power Supply Current ³ | 0.15 | 0.25 | mA/
mHz | V_{CC} = MAX, One Input Toggling,
50% Duty Cycle, Outputs Open,
\overline{OE} = GND,
$V_{IN} \le 0.2V$ or $V_{IN} \ge V_{CC} - 0.2V$ | | | | 1.7 | 4.0 | mA | $ \begin{aligned} & V_{\rm CC} = {\rm MAX}, \\ & 50\% \ {\rm Duty \ Cycle}, \ {\rm Outputs \ Open}, \\ & {\rm One \ Input \ Toggling \ at \ f_1} = 10 {\rm MHz}, \\ & {\rm \overline{OE}} = {\rm GND}, \\ & V_{\rm IN} \leq 0.2 {\rm V \ or \ } V_{\rm IN} \geq V_{\rm CC} - 0.2 {\rm V} \end{aligned} $ | | I _c | Total Power Supply Current⁵ | 2.0 | 5.0 | mA | $V_{\rm CC}$ = MAX,
50% Duty Cycle, Outputs Open,
One Input Toggling at f_1 = 10MHz,
$\overline{\rm OE}$ = GND,
$V_{\rm IN}$ = 3.4V or $V_{\rm IN}$ = GND | | | | 1.7 | 4.04 | mA | $\begin{array}{l} V_{\rm CC} = {\rm MAX}, \\ 50\% \ {\rm Duty \ Cycle}, \ {\rm Outputs \ Open}, \\ \underline{\rm Eight \ Bits \ Toggling \ at \ f_1} = 2.5 {\rm MHz}, \\ \overline{\rm OE} = {\rm GND}, \\ V_{\rm IN} \leq 0.2 {\rm V \ or \ V_{\rm IN}} \geq V_{\rm CC} - 0.2 {\rm V} \end{array}$ | | | | 2.7 | 8.04 | mA | $V_{\rm CC} = {\rm MAX},$ 50% Duty Cycle, Outputs Open, Eight Bits Toggling at f ₁ = 2.5MHz, $\overline{\rm OE} = {\rm GND},$ $V_{\rm IN} = 3.4 {\rm V}$ or $V_{\rm IN} = {\rm GND}$ | 1738 Tbl 06 #### Notes - 1. Typical values are at $V_{cc} = 5.0V$, +25°C ambient and maximum loading. - 2. Per TTL driven input (V_{IN} = 3.4V); all other inputs at V_{CC} or GND. - This parameter is not directly testable, but is derived for use in Total Power Supply calculations. - Values for these conditions are examples of the I_{cc} formula. These limits are guaranteed but not tested. - $\begin{array}{lll} 5.~l_c & = l_{\text{OUIESCENT}} + l_{\text{INPUTS}} + l_{\text{DYNAMIC}} \\ l_c & = l_{cc} + \Delta l_{cc} D_{\text{H}} N_{\text{T}} + l_{cco} (f_0/2 + f_1 N_1) \end{array}$ - I_{cc} = Quiescent Current with CMOS input levels - ΔI_{cc} = Power Supply Current for a TTL High Input (V_N = 3.4V) - D_H = Duty Cycle for TTL Inputs High - $N_{\tau} =$ Number of TTL inputs at D_{H} - I_{ccp} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL) - f_o = Clock Frequency for Register Devices (Zero for Non-Register Devices) - f, = Input Frequency - N = Number of Inputs at f - All currents are in milliamps and all frequencies are in megahertz. ## **FUNCTION TABLE — 'FCT157T** | Enable | Select
Inputs | Da
Inp | ita
uts | Output | |--------|------------------|----------------|------------|--------| | Ē | S | I _o | i, | Y | | Н | X | Х | Х | L | | L | Н | X | L | L | | Ļ | Н | X | H | Н | | L | L | L | X | L | | L | L | H | X | Н | 1738 Tbl 07 ## **FUNCTION TABLE — 'FCT158T** | Enable | Select
Inputs | Da
Inp | | Output | |--------|------------------|----------------|----|--------| | Ē | S | l _o | ١, | Y | | Н | X | X | X | Н | | L | L | Х | L | Н | | L | L | X | Н | L | | L | Н | LX | | Н | | L | Н | Н | X | L | 1738 Tbl 08 H = High voltage level L = Low voltage level X = Don't care # 7 ## PIN DESCRIPTIONS | Pin Names | Description | |-----------------------------------|---------------------------| | S | Common Select Input | | Ē | Enable Input (Active LOW) | | I _{OA} I _{OD} | Data Inputs from Source 0 | | I _{1A} - I _{1D} | Data Inputs from Source 1 | | $Y_A - Y_D$ | Non-Inverted Output | | $\overline{Y}_A - \overline{Y}_D$ | Inverted Output | 1738 Tbl 09 ## **AC CHARACTERISTICS ('FCT157T)** | | | 'FCT157T | | | | 'FCT1 | 157AT | | | 'FCT | | | | | | |--------------------------------------|-----------------------------|----------|------|------|------|-------|-------|-------|------|-------|------|-------|------|-------|------| | Symbol | nbol Parameter | | IL | CO | M'L | N | /IL | СО | M'L | ·N | /IL | СО | M'L | Units | Fig. | | | | Min.¹ | Max. | Min. | Max. | Min.¹ | Max. | Min.1 | Max. | Min.1 | Мах. | Min.¹ | Max. | | | | t _{PLH}
t _{PHL} | Propagation Delay In to Y | 1.5 | 7.0 | 1.5 | 6.0 | 1.5 | 5.8 | 1.5 | 5.0 | 1.5 | 5.0 | 1.5 | 4.3 | ns | 1, 3 | | t _{PLH}
t _{PHL} | Propagation Delay
E to Y | 1.5 | 12.0 | 1.5 | 10.5 | 1.5 | 7.4 | 1.5 | 6.0 | 1.5 | 5.9 | 1.5 | 4.8 | ns | 1, 5 | | t _{PLH}
t _{PHL} | Propagation Delay
S to Y | 1.5 | 12.0 | 1.5 | 10.5 | 1.5 | 8.1 | 1.5 | 7.0 | 1.5 | 6.0 | 1.5 | 5.2 | ns | 1, 3 | Note: Minimum limits are guaranteed but not tested on Propagation Delays. 1738 Tbi 10 ## **AC CHARACTERISTICS ('FCT158T)** | | | 'FCT158T | | | | 'FCT158AT | | | | | 'FCT1 | | | | | |--------------------------------------|-----------------------------|----------|------|-------|------|-----------|------|-----------|------|-------|------------|-------|------|-------|------| | Symbol | Parameter | MIL | | COM'L | | MIL | | MIL COM'L | | V | AIL | СО | M'L | Units | Fig. | | | | Min.¹ | Max. | Min. | Max. | Min. | Мах. | Min.1 | Max. | Min.1 | Мах. | Min.¹ | Max. | | | | t _{PLH}
t _{PHL} | Propagation Delay In to Y | 1.5 | 7.5 | 1.5 | 6.5 | 1.5 | 6.3 | 1.5 | 5.5 | 1.5 | 5.5 | 1.5 | 4.8 | ns | 1, 2 | | t _{PLH}
t _{PHL} | Propagation Delay
E to Y | 1.5 | 12.5 | 1.5 | 11.0 | 1.5 | 7.9 | 1.5 | 6.5 | 1.5 | 6.4 | 1.5 | 5.3 | ns | 1, 5 | | t _{PLH}
t _{PHL} | Propagation Delay
S to Y | 1.5 | 12.5 | 1.5 | 11.0 | 1.5 | 8.6 | 1.5 | 7.5 | 1.5 | 6.5 | 1.5 | 5.7 | ns | 1, 2 | Note: Minimum limits are guaranteed but not tested on Propagation Delays. 1738 Tbl 11 ## **ORDERING INFORMATION** 1738 07