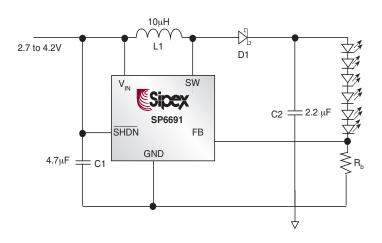


SP6691


Micro Power Boost Regulator Series White LED Driver

FEATURES NC NC 8 Drives up to 6 LEDs @ 25mA FB SP6691 SHDN 7 Drives up to 8 LEDs @ 20mA 8 Pin DFN NC ■ High Output Voltage: Up to 30V VIN 6 Optimized for Single Supply, SW GND 4 5 2.7V - 4.2V Applications Operates Down to 1V ■ High Efficiency: Greater Than 75% Low Quiescent Current: 20µA **APPLICATIONS** Ultra Low Shutdown Current: 10nA White LED Driver Single Battery Cell Operation High Voltage Bias Digital Cameras Programmable Output Voltage Cell Phone 1Ω switch (350mV at 350mA) Battery Backup ■ Lead Free, RoHS Compliant Packages: Handheld Computers 8 Pin DFN, 5 Pin TSOT or 5 Pin SOT23

DESCRIPTION

The SP6691 is a micro power boost regulator that is specifically designed for powering series configuration white LED. The part utilizes fixed off time architecture and consumes only 10nA quiescent current in shutdown. Low voltage operation, down to 1V, fully utilizes maximal battery life. The SP6691 is offered in a 8 Pin DFN, 5-pin SOT-23 or 5 Pin TSOT package and enables the construction of a complete regulator occupying < 0.2 in² board space.

TYPICAL APPLICATION CIRCUIT

ABSOLUTE MAXIMUM RATINGS

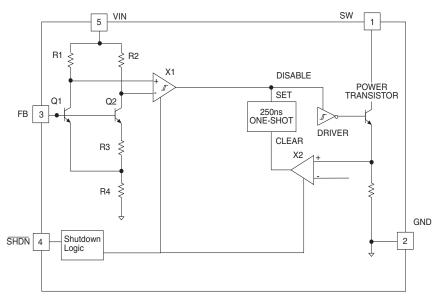
V _{IN}	15V
SW Voltage	
FB Voltage	2.5V
All other pins	-0.3 to V _{IN} + 0.3V
Current into FB	
T _. Max	125°C
Operating Temperature Range	40°C to 85°C
Peak Output Current < 10us SW	500mA

Storage Temperature	-65°C to +150°C
Power Dissipation.	200mW
ESD Rating	2kV HBM

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

ELECTRICAL CHARACTERISTICS

Specifications are at $T_A = 25^{\circ}$ C, $V_{IN} = 3.3$, $V_{SHDN} = V_{IN}$, \blacklozenge denotes the specifications which apply over the full operating temperature range, unless otherwise specified.

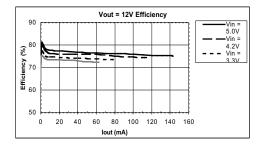

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	•	CONDITIONS
Input Voltage	V _{IN}	1.0		13.5	V		
Supply Current	Ι _Q		20	30	μA	•	No Switching
			0.01	1	μA	•	$\overline{\text{SHDN}} = 0V \text{ (off)}$
Reference Voltage	V _{FB}	1.17	1.22	1.27	V	•	
FB Hysteresis	HYST		8		mV		
V _{FB} Input Bias Current	I _{FB}		15	80	nA	•	V _{FB} = 1.22V
Line Regulation	$\Delta V_{o} / \Delta V_{I}$		0.1	0.3	%/V		$1.2 \le V_{IN} \le 13.5V$
Switch Off Time	T _{OFF}		250		nS		
Switch Saturation Voltage	V _{CESAT}		170	450	mV	•	I _{SW} = 325mA
Switch Current Limit	I _{LIM}	325	450	575	mA	•	
SHDN Bias Current	ISHDN		5	12	μA	•	$V_{\overline{SHDN}} = 3.3V$
SHDN High Threshold (on)	V _{IH}	0.9			V		
SHDN Low Threshold (off)	VIL			0.25	V		
Switch Leakage Current	I _{SWLK}		0.01	5	μΑ	٠	Switch Off, $V_{SW} = 5V$

PIN DESCRIPTION

PIN NUMBER	PIN NAME	8 PIN DFN DESCRIPTION
1	NC	No connect.
2	FB	Feedback.
3	NC	No connect.
3	SW	Switch input to the internal power switch
5	GND	Ground
6	V _{IN}	Input Voltage. Bypass this pin with a capacitor as close to the device as possible.
7	SHDN	Shutdown. Pull high (on) to enable. Pull low (off) for shutdown.
8	NC	No connect.

PIN NUMBER	PIN NAME	DESCRIPTION
1	SW	Switch input to the internal power switch.
2	GND	Ground
3	FB	Feedback
4	SHDN	Shutdown. Pull high (on) to enable. Pull low (off) for shutdown.
5	V _{IN}	Input Voltage. Bypass this pin with a capacitor as close to the device as possible.

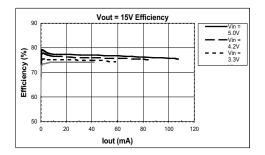
FUNCTIONAL DIAGRAM



THEORY OF OPERATION

Operation can be best understood by referring to the functional diagram above and the typical application circuit in the front page. Q1 and Q2 along with R3 and R4 form a band gap reference. The input to this circuit completes a feedback path from the high voltage output through a voltage divider, and is used as the regulation control input. When the voltage at the FB pin is slightly above 1.22V, comparator X1 disables most of the internal circuitry. Current is then provided by capacitor C2, which slowly discharges until the voltage at the FB pin drops below the lower hysteresis point of X1, about 6mV. X1 then enables the internal circuitry, turns on chip power, and the current in the inductor begins to ramp up. When the current through the driver transistor reaches about

450mA, comparator X2 clears the latch, which turns off the driver transistor for a preset 250nS. At the instant of shutoff, inductor current is diverted to the output through diode D1. During this 250nS time limit, inductor current decreases while its energy charges C2.


At the end of the 250ns time period, driver transistor is again allowed to turn on which ramps the current back up to the 450mA level. Comparator X2 clears the latch, it's output turns off the driver transistor, and this allows delivery of L1's stored kinetic energy to C2. This switching action continues until the output capacitor voltage is charged to the point where FB is at band gap (1.22V). When this condition is reached, X1 turns off the internal circuitry and the cycle repeats.

Vout = 12V Load Regulation 13.0 Vin = 5.0V Vin = 12.5 4.2V Vin = Vout (V) 12.0 11.5 11.0 20 40 100 120 140 160 0 60 80 lout (mA)

Figure 1. 12V Output Efficiency

Figure 2. 12V Output Load Regulation

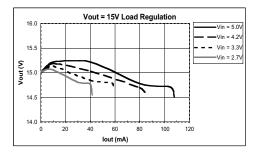


Figure 3. 15V Output Efficiency

Figure 4. 15V Output Load Regulation

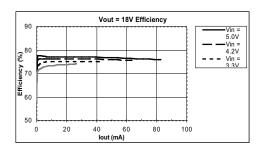


Figure 5. 18V Output Efficiency

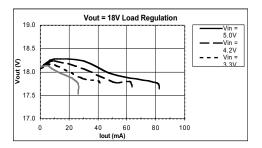
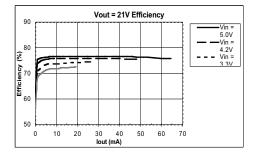



Figure 6. 18V Output Load Regulation

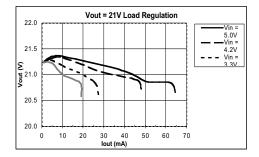
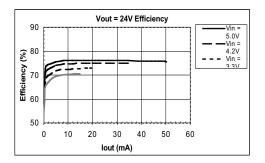



Figure 7. 21V Output Efficiency

Figure 8. 21V Output Load Regulation

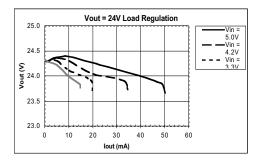


Figure 9. 24V Output Efficiency

Figure 10. 24V Output Load Regulation

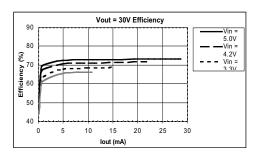


Figure 11. 30V Output Efficiency

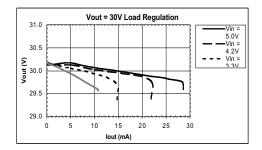
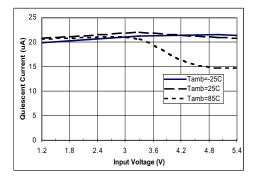



Figure 12. 30V Output Load Regulation

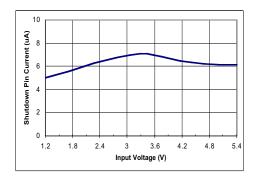


Figure 13. Quiescent Current I_Q vs. V_{IN}

Figure 14. Shutdown Pin Current vs. VIN

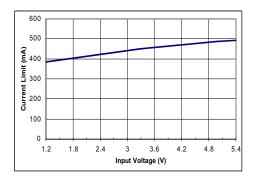


Figure 15. I_{PK} Current Limit vs. V_{IN}

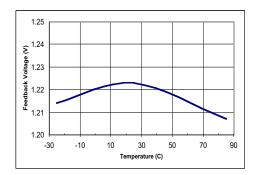


Figure 17. Feedback Voltage vs. Temperature



Figure 16. Switch Saturation Voltage V_{CESAT} vs. Temperature ($I_{SW} = 450mA$)

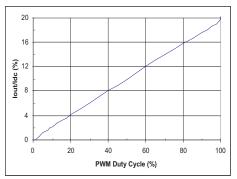


Figure 18. Average I_0 vs. SHDN Duty Cycle (V_{IN} =3.3V, Standard 4x20mA WLED Evaluation Board, PWM Frequency 100Hz

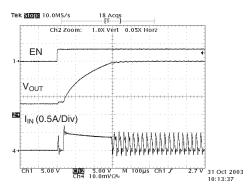


Figure 19. Startup Waveform (V_{IN} =3.3V, V_{OUT} =15V, I_{OUT} =20mA)

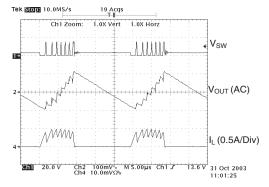


Figure 20. Typical Switching Waveforms (V_{IN}=3V, V_{OUT}=15V, I_{OUT}=20mA)

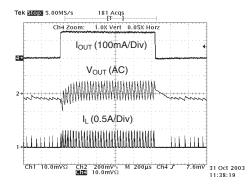


Figure 21. Load Step Transient (V_{IN}=3V, V_{OUT}=21V, 1~15mA Load Step

Inductor Selection

For SP6691, the internal switch will be turned off only after the inductor current reaches the typical dc current limit (I_{LIM} =450mA). However, there is typically propagation delay of 200nS between the time when the current limit is reached and when the switch is actually turned off. During this 200nS delay, the peak inductor current will increase, exceeding the current limit by a small amount. The peak inductor current can be estimated by:

 $\mathrm{I}_{\mathrm{PK}} = \mathrm{I}_{\mathrm{LIM}} + \frac{\mathrm{V}_{\mathrm{IN}(\mathrm{MAX})}}{\mathrm{L}} \, \bullet 200 \mathrm{nS}$

The larger the input voltage and the lower the inductor value, the greater the peak current.

In selecting an inductor, the saturation current specified for the inductor needs to be greater than the SP6691 peak current to avoid saturating the inductor, which would result in a loss in efficiency and could damage the inductor.

Choosing an inductor with low DCR decreases power losses and increase efficiency.

Refer to Table 1 for some suggested low ESR inductors.

MANUF.	PART NUMBER	DCR (Ω)	Current Rating (mA)
MURATA 770-436-1300	LQH32CN100K11 (10µH)	0.3	450
TDK 847-803-6100	NLC453232T-100K (10µH)	0.55	500

Diode Selection

A schottky diode with a low forward drop and fast switching speed is ideally used here to achieve high efficiency. In selecting a Schottky diode, the current rating of the schottky diode should be larger than the peak inductor current. Moreover, the reverse breakdown voltage of the schottky diode should be larger than the output voltage.

Capacitor Selection

Ceramic capacitors are recommended for their inherently low ESR, which will help produce low peak to peak output ripple, and reduce high frequency spikes.

For the typical application, 4.7μ F input capacitor and 2.2μ F output capacitor are sufficient. The input and output ripple could be further reduced by increasing the value of the input and output capacitors. Place all the capacitors as close to the SP6691 as possible for layout. For use as a voltage source, to reduce the output ripple, a small feedforward (47pF) across the top feedback resistor can be used to provide sufficient overdrive for the error comparator, thus reduce the output ripple.

Refer to Table 2 for some suggested low ESR capacitors.

MANUF.	PART NUMBER	CAP /VOLTAGE	SIZE /TYPE
MURATA	GRM32RR71E	2.2μF	1210
770-436-1300	225KC01B	/25V	/X5R
MURATA	GRM31CR61A	4.7μF	1206
770-436-1300	475KA01B	/10V	/X5R
TDK	C3225X7R1E	2.2μF	1210
847-803-6100	225M	/25V	/X7R
TDK	C3216X5R1A	4.7μF	1206
847-803-6100	475K	/10V	/X5R

Table 2. Suggested Low ESR Capacitor

LED Current Program

In the white LEDs application, the SP6691 is generally programmed as a current source. The bias resistor R_b , as shown in the typical application circuit is used to set the operating current of the white LED using the equation:

$$R_b = \frac{V_{FB}}{I_F}$$

where V_{FB} is the feedback pin voltage (1.22V), I_F is the operating current of the White LEDs. In order to achieve accurate LED current, 1%

precision resistors are recommended. Table 3 below shows the R_b selection for different white LED currents. For example, to set the operating current to be 20mA, R_b is selected as 60.4 Ω , as shown in the schematic.

Table 3. Bias Resistor Selection

I _F (mA)	$\mathbf{R}_{\mathbf{b}}\left(\Omega\right)$
5	243
10	121
12	102
15	80.6
20	60.4

Output Voltage Program

The SP6691 can be programmed as either a voltage source or a current source. To program the SP6691 as voltage source, the SP6691 requires 2 feedback resistors $R_1 \& R_2$ to control the output voltage. As shown in Figure 22.

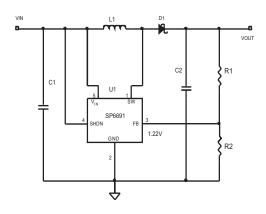


Figure 22. Using SP6691 as Voltage Source

The formula and table for the resistor selection are shown below:

$$\mathbf{R}_1 = \left(\frac{\mathbf{V}_{\text{OUT}}}{1.22} - 1\right) \bullet \mathbf{R}_2$$

APPLICATION INFORMATION: Continued

Table 4. Divider Resistor Selection

V _{OUT} (V)	$\mathbf{R}_{1}\left(\Omega\right)$	$\mathbf{R}_{2}(\Omega)$
12	1M	113K
15	1M	88.7K
18	1M	73.2K
21	1M	61.9K
30	1M	42.2K

Brightness Control

Dimming control can be achieved by applying a PWM control signal to the SHDN pin. The brightness of the white LEDs is controlled by increasing and decreasing the duty cycle of the PWM signal. A 0% duty cycle corresponds to zero LED current and a 100% duty cycle corresponds to full load current. While the operating frequency range of the PWM control is from 60Hz to 700Hz, the recommended maximum brightness frequency range of the PWM signal is from 60Hz to 200Hz. A repetition rate of at least 60Hz is required to prevent flicker. The magnitude of the PWM signal should be higher than the minimum SHDN voltage high.

Open Circuit Protection

When any white LED inside the white LED module fails or the LED module is disconnected from the circuit, the output and the feedback control will be open, thus resulting in a high output voltage, which may cause the SW pin voltage to exceed it maximum rating. In this case, a zener diode can be used at the output to limit the voltage on the SW pin and protect the part. The zener voltage should be larger than the maximum forward voltage of the White LED module.

Layout Consideration

Both the input capacitor and the output capacitor should be placed as close as possible to the IC.

This can reduce the copper trace resistance which directly effects the input and output ripples. The feedback resistor network should be kept close to the FB pin to minimize copper trace connections that can inject noise into the system. The ground connection for the feedback resistor network should connect directly to the GND pin or to an analog ground plane that is tied directly to the GND pin. The inductor and the schottky diode should be placed as close as possible to the switch pin to minimize the noise coupling to the other circuits, especially the feedback network.

Power Efficiency

For the typical application circuit, the output efficiency of the circuit is expressed by

$$\eta = \frac{V_{OUT} \bullet I_{OUT}}{V_{IN} \bullet I_{IN}}$$

Where V_{IN} , I_{IN} , V_{OUT} , I_{OUT} are the input and output voltage and current respectively.

While the white LED efficiency is expressed by

$$\eta = \frac{(V_{OUT} - 1.22) \bullet I_{OUT}}{V_{IN} \bullet I_{IN}}$$

This equation indicates that the white LED efficiency will be much smaller than the output efficiency of the circuit when V_{OUT} is not very large, compared to the feedback voltage (1.22V).

The other power is consumed by the bias resistor. To reduce this power loss, two circuits can be used, as shown in Figure 23 and Figure 24. In Figure 23, a general-purpose diode (for example, 1N4148) is used to bring the voltage across the bias resistor to be around 0.7V. R_1 is used to create a loop that provides around 100µA operating current for the diode. 3% efficiency improvement can be achieved by using this method.

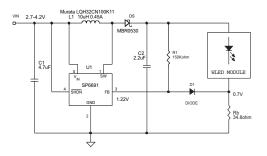


Figure 23. Improve Efficiency with Diode in Feedback Loop

To further improve the efficiency and reduce the effects of the ambient temperature on the diode D1 used in method 1, an op amp circuit can be used as shown in Figure 24. The gain of the op amp circuit can be calculated by:

$$Av = \frac{R_1 + R_2}{R_1}$$

If the voltage across the bias resistor is set to be 0.1V the current through R_1 and R_2 to be around 100µA, R_1 and R_2 can be selected as 1K and 11.2K respectively. LMV341 can be used because of its small supply current, offset voltage and minimum supply voltage. By using this method, the efficiency can be increased around 7%.

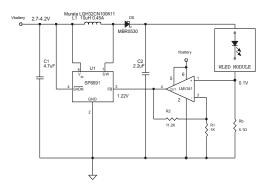


Figure 24. Improve Efficiency with Op Amp in Feedback Loop

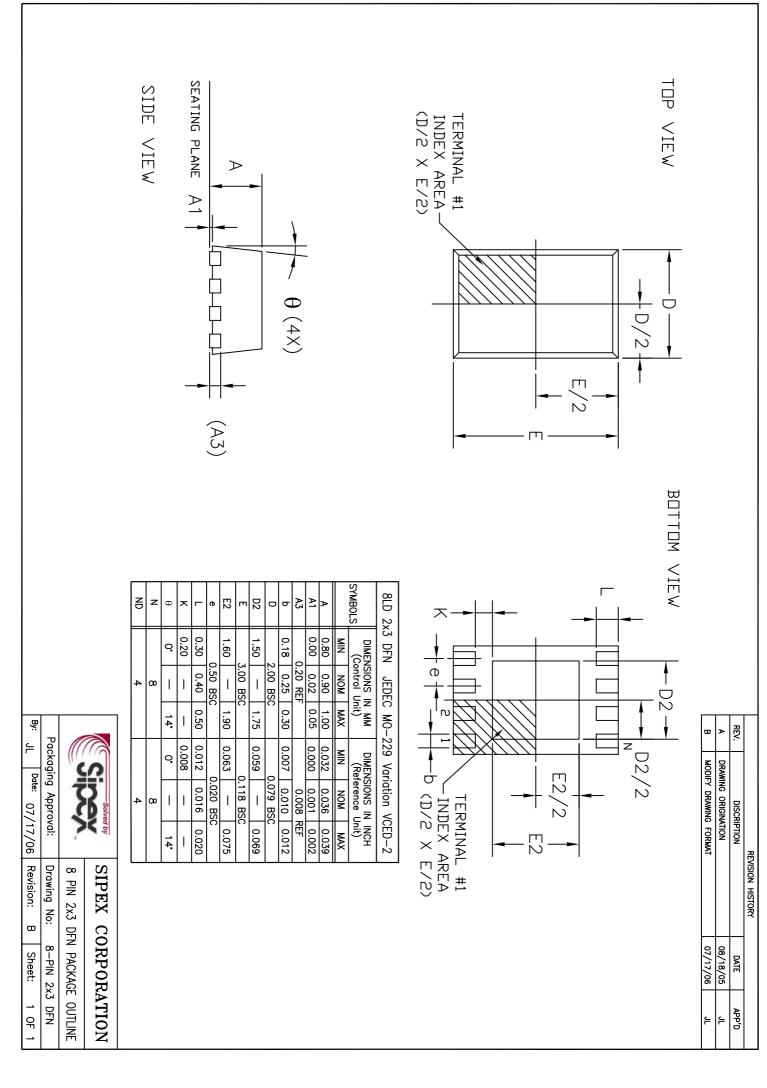
PACKAGE: PINOUTS

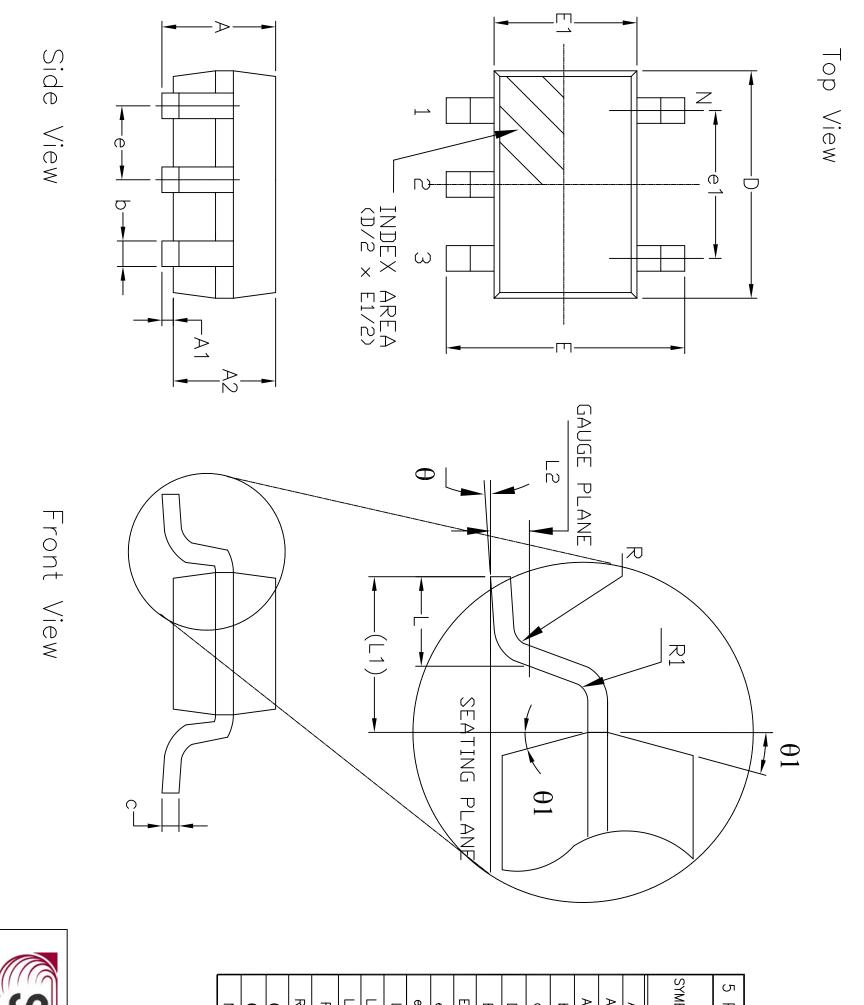
Appendix and Web Link Information

For further assistance:

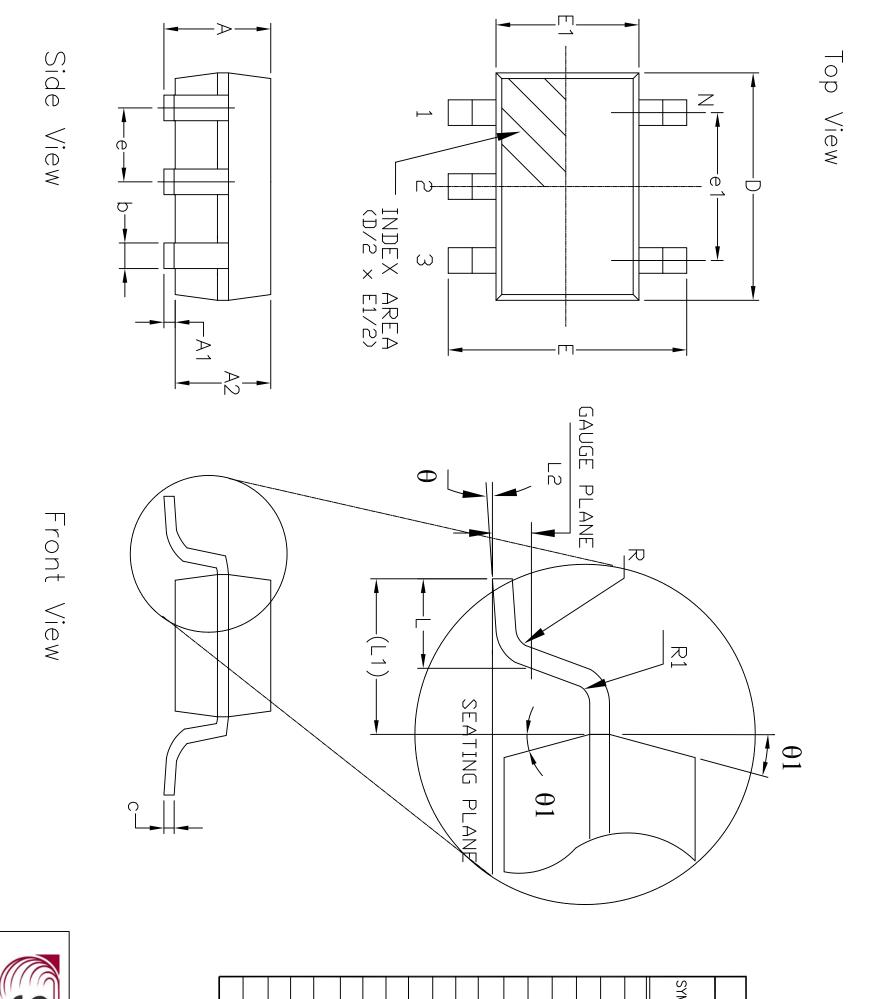
Email: WWW Support page: Sipex Application Notes: Product Change Notices: Sipexsupport@sipex.com http://www.sipex.com/content.aspx?p=support http://www.sipex.com/applicationNotes.aspx http://www.sipex.com/content.aspx?p=pcn

Sipex Corporation Headquarters and Sales Office 233 South Hillview Drive Milpitas, CA95035 tel: (408) 934-7500 faX: (408) 935-7600


Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.


The following sections contain information which is more changeable in nature and is therefore generated as appendices.

- 1) Package Outline Drawings
- 2) Ordering Information


If Available:

- 3) Frequently Asked Questions
- 4) Evaluation Board Manuals
- 5) Reliability Reports
- 6) Product Characterization Reports
- 7) Application Notes for this product
- 8) Design Solutions for this product

By: JL																								-	в	A	REV.
_ Date:	Packaging		R	z	θ1			2	5	Г	e1	ი	E1	m	D	c	σ	A2	A1	A		SYMBOLS	5 Pin		DRAWING	DRAWING	
07,	Approval:	~	Solved by		ں ر		0.10	0	0	0.30	1	0		2	2	0.08	0.30	0.90	0.00		MIN	DIMENSIONS (Control	SOT-23		FORMAT MODIFICATION	$ \circ $	DISCRIPTION
/25/06		74	V	տ	10 [°]	<u>-</u>		0.25 BSC	0.60 REF	0.45	1.90 BSC	0.95 BSC	1.60 BSC	2.80 BSC	2.90 BSC			1.15			NON	IENSIONS (Control U	JEDEC		NODIFICA	N	
Revision:	Drawing	5 PIN	SIP		<u>ئ</u> ر	0.25		Ö	'''	0.60	ĉ	ñ	õ	ñ	ĉ	0.22	0.50	1.30	0.15	1.45	MAX	Unit)	<u>C</u> MO		TION		REVISION HISTORY
on: B	ng No:	SOT-	ΕX		ທຸດ	0.004	0.004	.0	0	0.012	0	0	0	0	0	0.003	0.012	0.036	0.000		NIN	DIMENSIONS (Reference	-178 \				IISTORY
	5-	23 PA	CORP	ப	10°	·		0.010 BSC	0.024 REF	0.018	0.075 B	0.038 B	0.063 B	0.111 B	0.115 B			0.045			NON	ω	Variation		07/2	10/3/05	DATE
Sheet:	-PIN	PACKAGE	°0R∕		ئ د	0.010		Ő	'די 	0.024	BSC	BSC	BSC	BSC	BSC	0.009	0.020	0.051	0.006	0.057	MAX	IN INCH Unit)	n AA		/25/06	/05	Ē
1 OF 1	S0T-23	OUTLINE	ORATION		I							,											-	-	٦L	٦L	APP'D

By: JL	Pac								I															1	₿	Þ	REV.
Date:	Packaging ,	4	Ci.	z	θ1	A R1	עד	12	5	Г	e1	e	E1	Ē	D	c	b	A2	A1	A		SYMBOLS	5 Pin			DRAWING	
09/13	Approval:	~	Solved by		4	0.10	0.10		0	0.30	1	0	1.	2	2	0.08	0.30	0.70	0.00		MIN	DIMENSIONS (Control	TSOT		FORMAT MODIFICATION	ORIGINATION	DISCRIPTION
3/06		ž	¥ ¥	თ	10°	<u>.</u>		0.25 BSC	0.60 REF	0.45	1.90 BSC	0.95 BSC	.60 BSC	2.80 BSC	2.90 BSC			0.90			NON	IENSIONS (Control U	JEDEC		NODIFICAT	N	
Revision:	Drawing	5 PIN	SIP		12°	۵.25 ۵		C	`T	0.60	С	С	C	С	С	0.20	0.50	1.00	0.10	1.10	MAX	Unit)	MO-		ION		REVISION HISTORY
on: B	ng No:	N TSOT	EX (4.	0.004	0.004	0.	0.	0.012	0	0	0	0	0	0.003	0.012	0.028	0.000		NIN	DIMENSIONS (Reference	193 Vo				ISTORY
	ۍ ب	T PACKAGE	CORP	ഗ	10°	4°		0.010 BSC	0.024 REF	0.018	0.075 B	0.038 B	0.063 B	0.110 B	0.114 B			0.036			NON	ιυ	Variation		09/1	08/0	DATE
Sheet:	-PIN T		ORA		12°	0.010)ö	 	0.024	BSC	BSC	BSC	BSC	BSC	0.008	0.020	0.039	0.004	0.043	MAX	IN INCH Unit)	AB		09/13/06	08/04/05	
1 OF 1	TSOT	OUTLINE	TION																					-	٦L	٦	APP'D

Ordering Information

_

Part Number	Status	Min Temp °C	Max Temp °C	RoHS	MSL Level	Pack Type	Quantity	Package
SP6691EB	Active	0	70	N/A	Board	Eval Board. Not Available in Bulk	1	Board
SP6691ER-L	Active	-40	85	Yes	L1 @ 250°C	Not Available in Bulk	3000	DFN8
SP6691ER-L/TR	Active	-40	85	Yes	L1 @ 250°C	Tape & Reel	3000	DFN8
SP6691EK-L	Active	-40	85	Yes	L1 @ 260°C	Not Available in Bulk	2500	SOT-23-5
SP6691EK-L/TR	Active	-40	85	Yes	L1 @ 260°C	Tape & Reel	2500	<u>SOT-23-5</u>
SP6691EK1-L	Active	-40	85	Yes	L1 @ 260°C	Not Available in Bulk	2500	TSOT5
SP6691EK1-L/TR	Active	-40	85	Yes	L1 @ 260°C	Tape & Reel	2500	TSOT5
SP6691ER	EOL	-40	85	No	L1 @ 240°C	Not Available in Bulk	3000	DFN8
SP6691EK	EOL	-40	85	No	L1 @ 240°C	Not Available in Bulk	2500	<u>SOT-23-5</u>
SP6691EK/TR	EOL	-40	85	No	L1 @ 240°C	Tape & Reel	2500	<u>SOT-23-5</u>
SP6691EK1	EOL	-40	85	No	L1 @ 240°C	Not Available in Bulk	2500	TSOT5
SP6691ER/TR	OBS	-40	85	No	L1 @ 240⁰C	Tape & Reel	3000	DFN8
SP6691EK1/TR	OBS	-40	85	No	L1 @ 240°C	Tape & Reel	2500	TSOT5

Product Characterization Report

for the

SP6690 Family of Products

SP4446, SP6690, and SP6691 Products

Prepared By: Salvador Wu & Greg West Date: January 23, 2007

SP6690 Product Family Characterization Report

Table of Contents

Section	Page 1
Introduction	3
Characterization Procedure	3
Data Summary for Key Parameters	4
Conclusions	5

Data Histograms

Appendix A

Introduction: This product family characterization was done as part of the qualification of Sipex's fabrication site transfer from Sipex's Hillview Fab in Milpitas, CA, to a contract foundry, Silan, in Hangzhou, China. This characterization report summarizes data for key SP6690 product family characteristics and contains distributions for all parameters. A complete listing of the product numbers covered by the characterization report is included in the "Conclusion" section of this report. The distributions in Appendix A are arranged so that the Hillview and Silan distributions for a given parameter are adjacent. A distribution for a given parameter shows different temperature data which are at - 40°C, 25°C, and 85°C.

Wafer Fab: Silan Fab Location: Hangzhou, China Process: Silan – bp1 MS: 1136

Characterization Procedure:

Hillview Lot number(s): HV6690CHAR Silan Lot number(s): 10028 Temperatures: Ambient (25C), 85C, -40C Tester: LTX Test Program: SP6690_QUAL_SILAN_00.08/30/2006

SP6690 Product Family Characterization Report

Data Summary:

Key Parameter Across Temperature Data Summary

Key Parameter	Units	Hillview Fab Distribution Mean	Hillview Fab Distribution Variance	Hillview Fab Cpk (across temp)	Silan Fab Distribution Mean	Silan Fab Distribution Variance	Silan Fab Cpk (across temp)
10.0: Vfb input current Ivfb, Vin=3.3V, Vfb=1.2V @ -40C	nA	12.488	35.959	0.1065	30.125	13.759	0.7056
14.0: Vin off current, Ven=0V, Vin=3.3 @ -40 C	nA	124.000	90.805	1.5565	177.333	201.716	0.7888
15.0: Shutdown high threshold go- no-go Vsdhdn=0.8 @ 25 C	mA	6.107	258.049E-03	>4.0000	3.294	160.621E-03	>4.0000
16.0: Shutdown low threshold go- no-go Vshdn=0.3 @ -40C	uA	-23.500	3.998	>4.0000	9.333	1.988	>4.0000
17.0: Shutdown input current, Vshdn=5V, Vin=3.3. @ 85C	uA	5.366	58.160E-03	>4.0000	3.956	64.887E-03	>4.0000
18.0: Vfb posttrim rising threshold Vin=3.3 @ -40C	v	1.232	8.063E-03	0.7496	1.234	8.247E-03	1.4619
20.0: Vfb rising threshold, Vin=1.2 @ -40C	v	1.232	8.038E-03	0.7492	1.236	7.772E-03	1.4696
22.0: Vin current SW OFF @ 85C	uA	53.046	178.846	-0.0430	332.921	467.917	-0.2158
25.0: Vfb line regulation, Vin=1.2, to Vin=14 @ 85C	m%	-107.367	14.114E	1.7154	-143.645	21.476	0.5643
31.0: Current limit post trim, Vin=3.3 @ 25C	mA	410.152	16.929	0.6862	303.896	7.978	1.9264
34.0: sw Vcesat Isw=250ma Vin=3.3 @ 25C	mV	148.600	3.013	>4.0000	147.333	2.249	>4.0000
35.0: sw leakage current Vsw=5v Vin=3.3 @ 85C	nA	326.667	63.427	>4.0000	408.710	97.459	>4.0000

Conclusion:

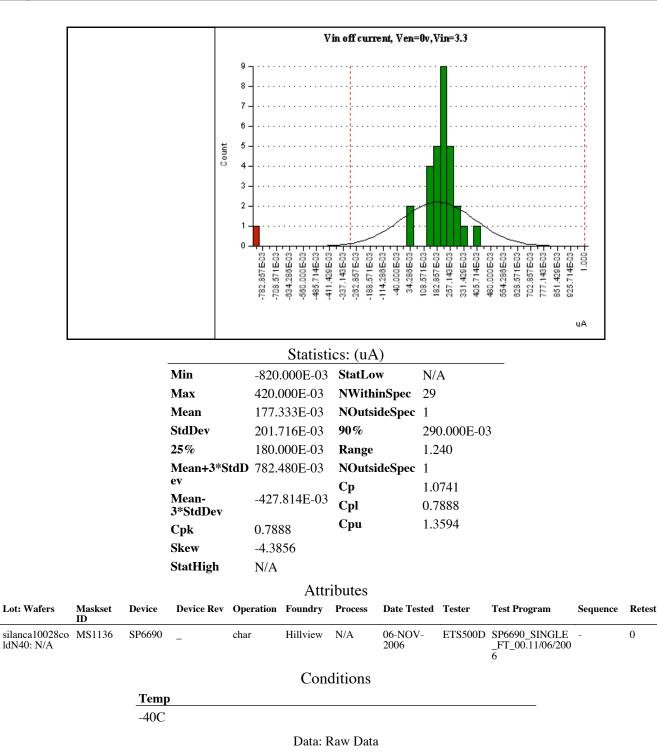
Characterization data over temperature and Vcc range show datasheet parameters meet the spec. Cpk's for most parameters are comparable between Hillview and Silan although many show a strong temperature dependence that tends to produce lower Cpk's in this analysis.

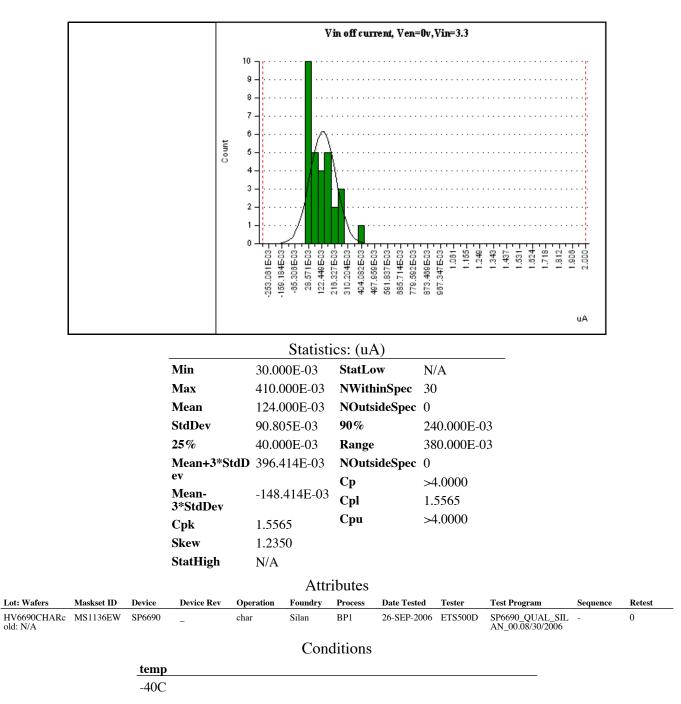
The performance of SP6690 parts fabricated at Silan are comparable to the current SP6690 parts built from the Hillview fab.

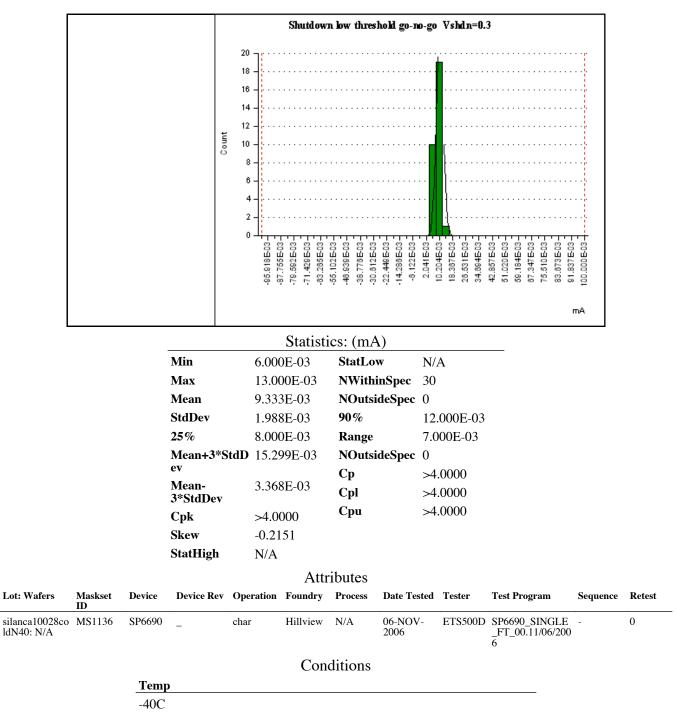
This characterization report applies to the following SP6690 family of product part numbers:

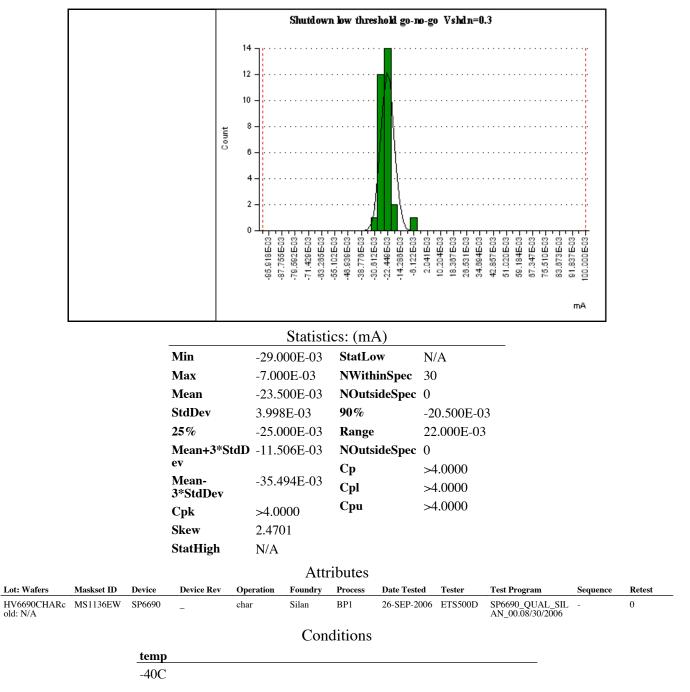
SP4446EK SP4446EK-L SP6690EK SP6690EK1-L SP6690EK-L SP6690ER SP6690ER-L SP6691EK SP6691EK1 SP6691EK1-L SP6691EK-L SP6691ER SP6691ER

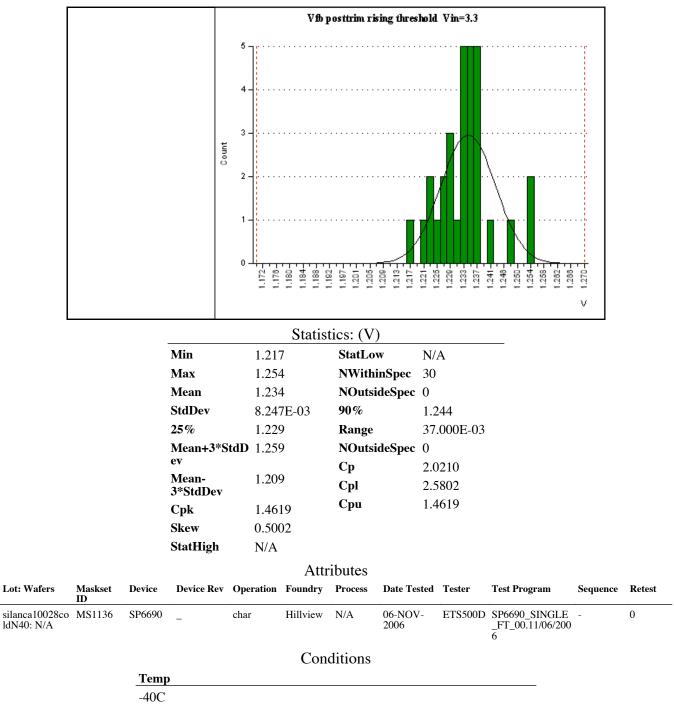
SP6690 Product Family Characterization Report

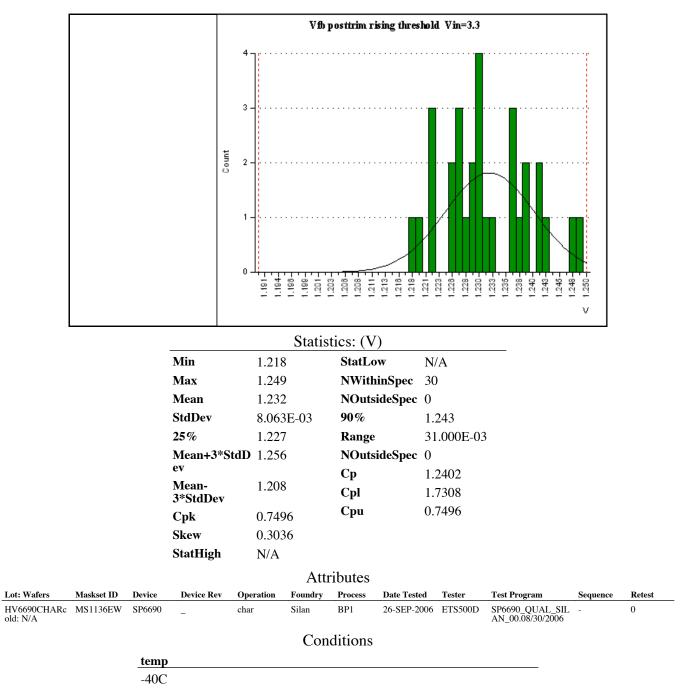

This page intentionally left blank.

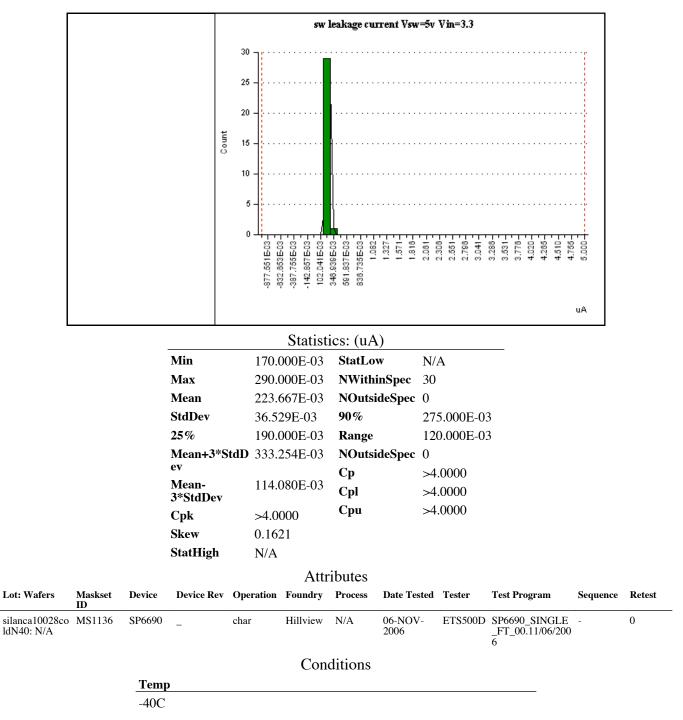


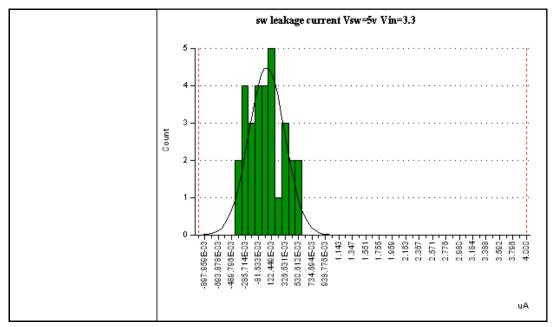

SP6690 Product Family Characterization Report

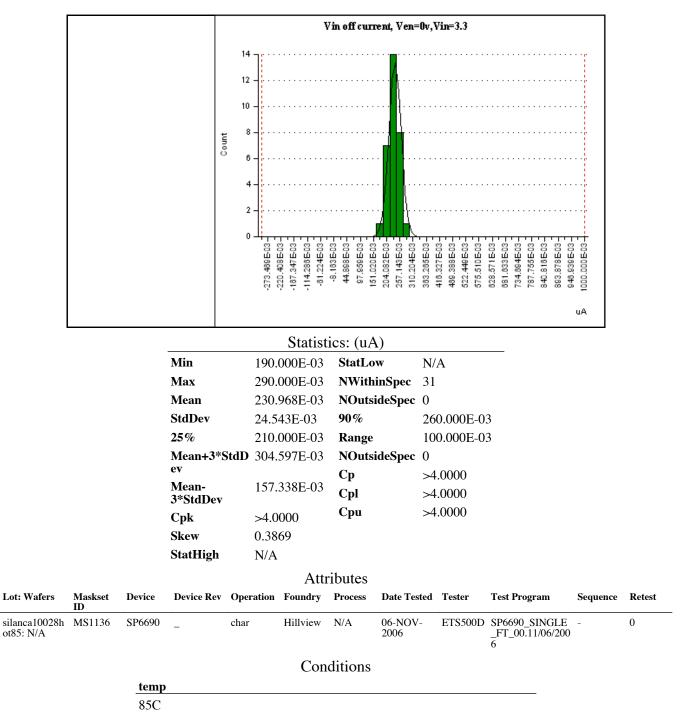

Appendix A Characterization Data Histograms

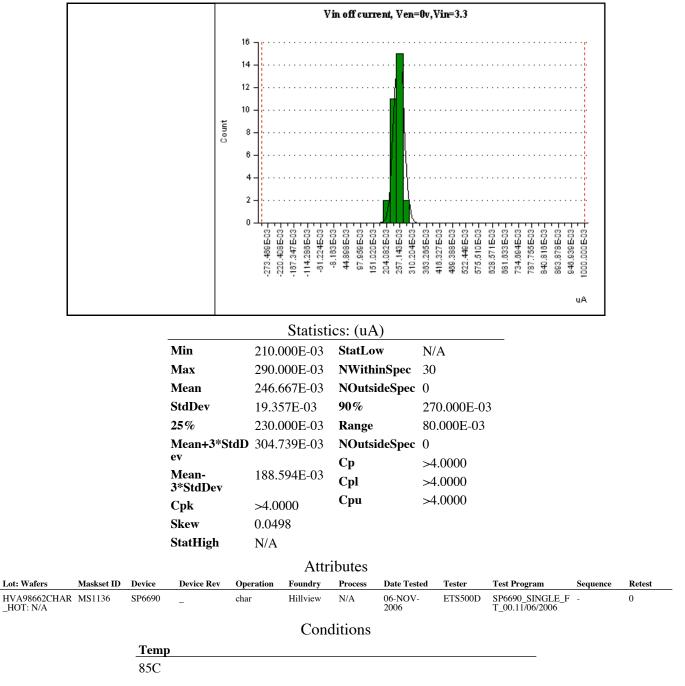

Page 7 of 7 2/23/2007

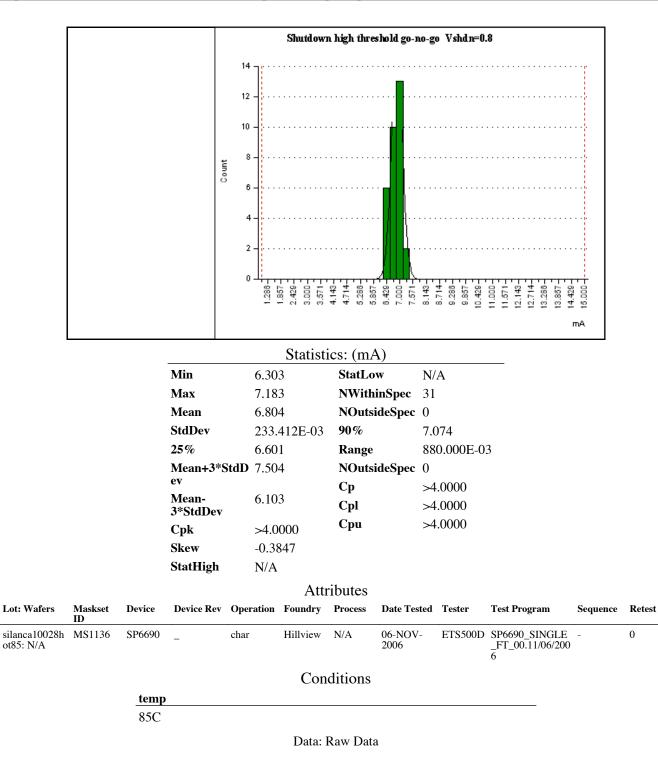


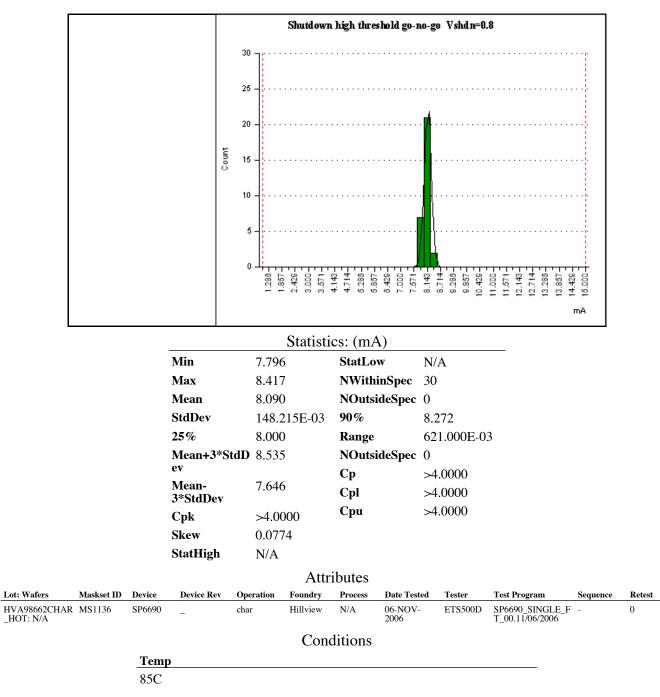




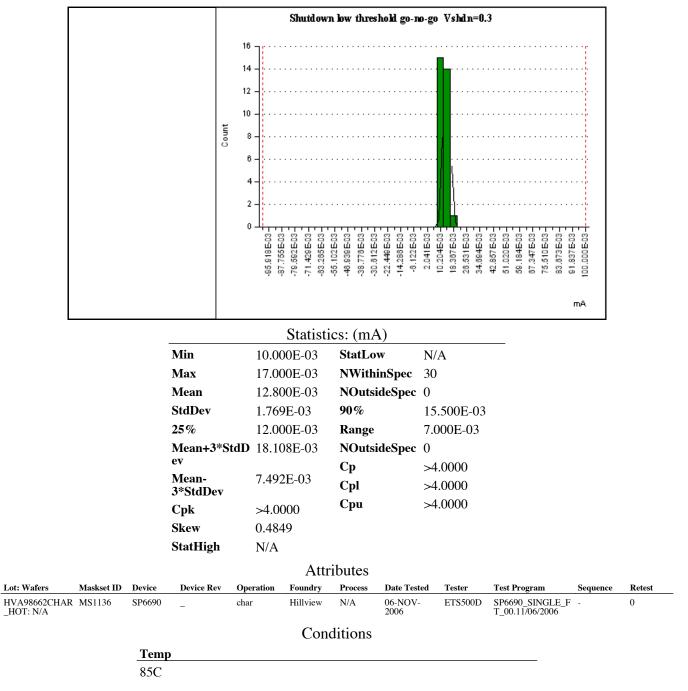

Statistics: (uA)

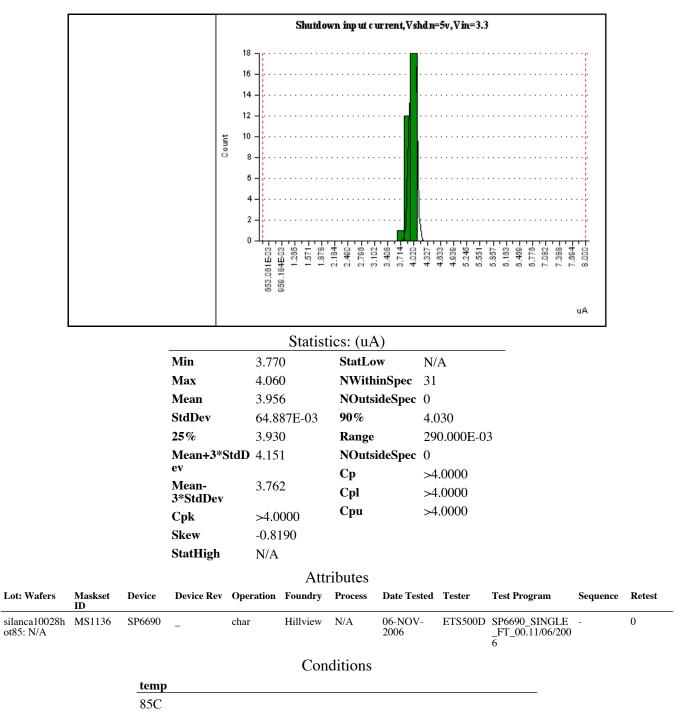

	Statisti		
Min	-390.000E-03	StatLow	N/A
Max	560.000E-03	NWithinSpec	30
Mean	31.333E-03	NOutsideSpec	0
StdDev	272.191E-03	90%	425.000E-03
25%	-190.000E-03	Range	950.000E-03
Mean+3*StdD	847.906E-03	NOutsideSpec	0
ev		Ср	3.0616
Mean- 3*StdDev	-785.239E-03	Cpl	1.2630
Cpk	1.2630	Сри	>4.0000
Skew	0.2330		
StatHigh	N/A		
	Attri	butes	

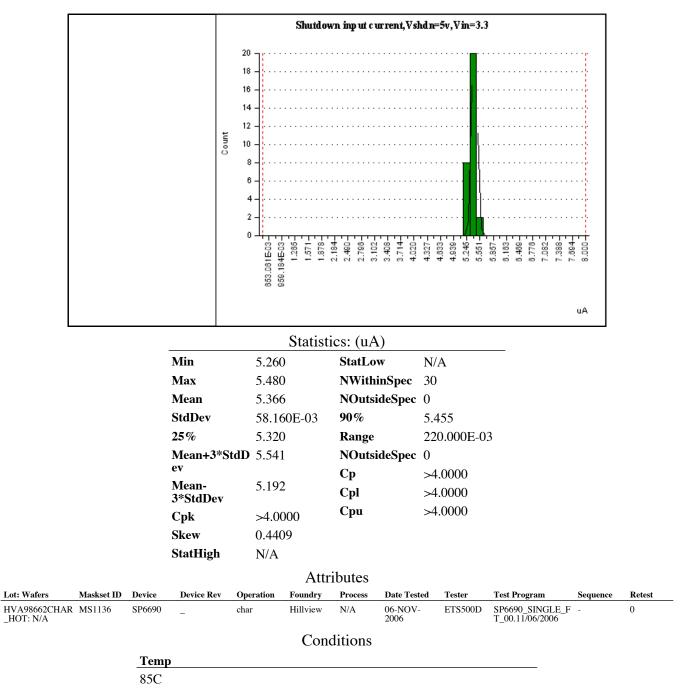

					1 1001	104405					
Lot: Wafers	Maskset ID	Device	Device Rev	Operation	Foundry	Process	Date Tested	Tester	Test Program	Sequence	Retest
HV6690CHARc old: N/A	MS1136EW	SP6690	-	char	Silan	BP1	26-SEP-2006	ETS500D	SP6690_QUAL_SIL AN_00.08/30/2006	-	0
					Con	ditions					

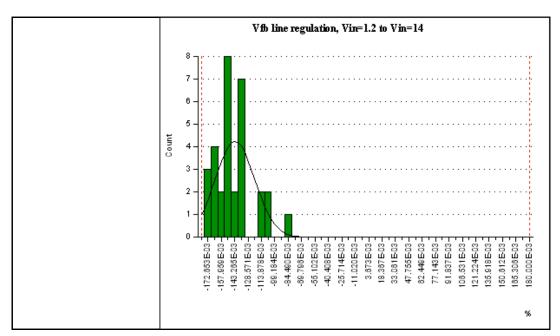

temp

-40C

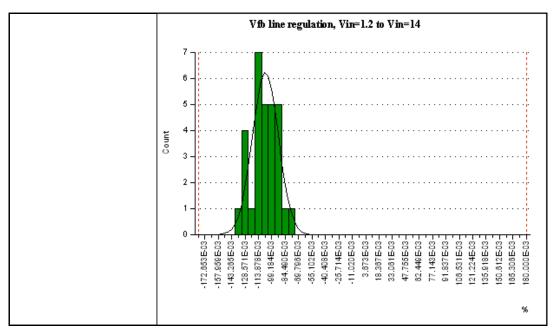





Г


٦

						Shutdov	vn low th	reshold go-1	no-go	Vshdn=0.	3		
			-	16 14 10 8 6 4 2 0	- · · · · · · · · · · · · · · · · · · ·	-79.5026.03 -71.4266.03 -63.2656.03	-65.102E03 -49.939E03 -88.770E03	-30.612E03- -22.449E03- -14.288E03- -6.122E03-	2.041 E 03	10.204E03 18.307E03 28.531E03 34.894E03	42.8676.03 61.0206.03 69.1846.03 65.6106.03 75.6106.03 83.0776.03	81.837 E 03	
												mA	
						Statis	tics: (n	nA)					
			Min		9.000)E-03	StatI	JOW	N/	A			
			Max		15.00	0E-03	NWi	thinSpec	31				
			Mean			26E-03		tsideSpec					
			StdDev		1.647		90%			.000E-03			
			25%			0E-03	Rang			000E-03			
			Mean+3*S	StdD	17.16	68E-03		tsideSpec					
			ev Mean-		7.284	E-03	Ср			.0000			
			3*StdDev		1.207		Cpl			.0000			
			Cpk		>4.00	000	Cpu		>4	.0000			
			Skew		-0.19	53							
			StatHigh		N/A								
						Att	ributes	5					
Lot: Wafers	Maskset ID	Device	Device Rev	Oper	ration	Foundry	Process	Date Te	sted	Tester	Test Program	Sequence	Retest
				char	······	Hillview	N/A	06-NOV	V-	ETS500D	SP6690_SINGLE	-	0
silanca10028h ot85: N/A		SP6690	-	Char				2006			_FT_00.11/06/200)	
		SP6690	_	Cilai		Со	ndition				_F1_00.11/06/200 6)	
		SP6690 temp	_	chai		Coi	ndition				_F1_00.11/06/200)	

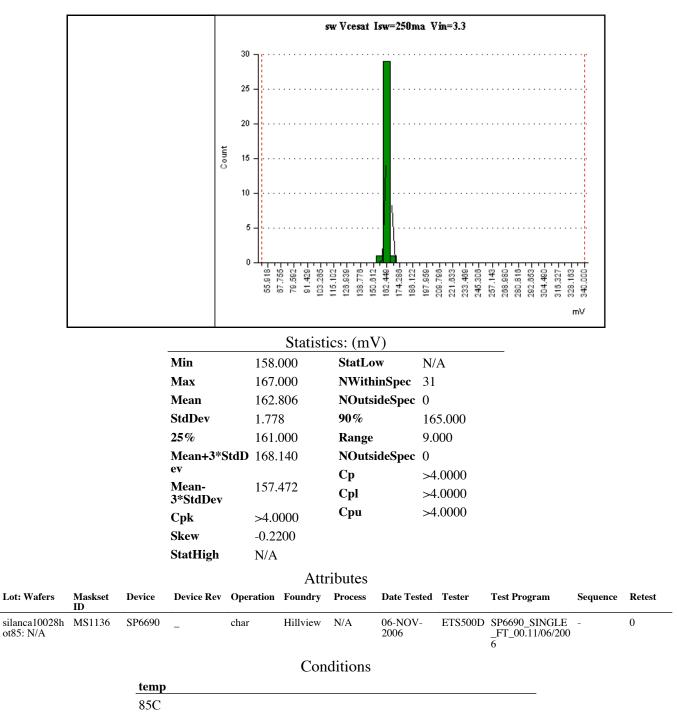

Statistics: (%)

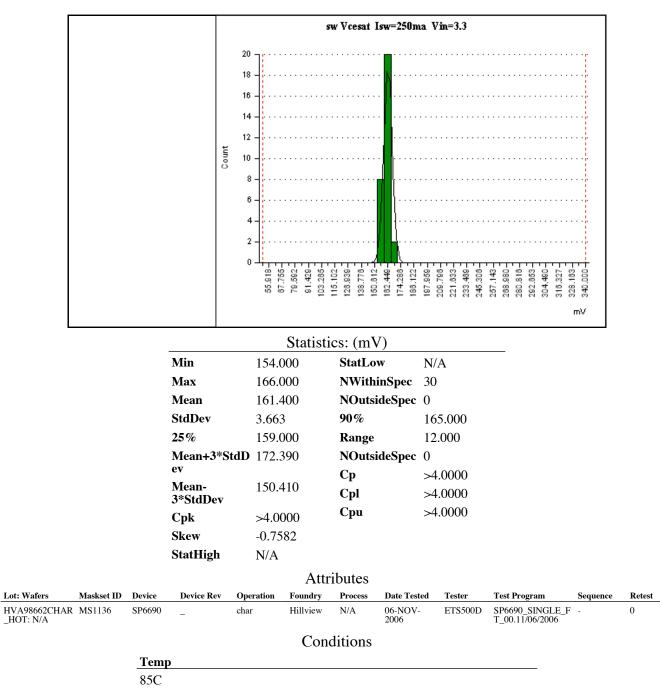
	Statist		
Min	-174.000E-03	StatLow	N/A
Max	-81.000E-03	NWithinSpec	31
Mean	-143.645E-03	NOutsideSpec	0
StdDev	21.476E-03	90%	-111.000E-03
25%	-159.000E-03	Range	93.000E-03
Mean+3*StdD	-79.216E-03	NOutsideSpec	0
ev		Ср	2.7938
Mean- 3*StdDev	-208.074E-03	Cpl	0.5643
Cpk	0.5643	Сри	>4.0000
Skew	0.9454		
StatHigh	N/A		

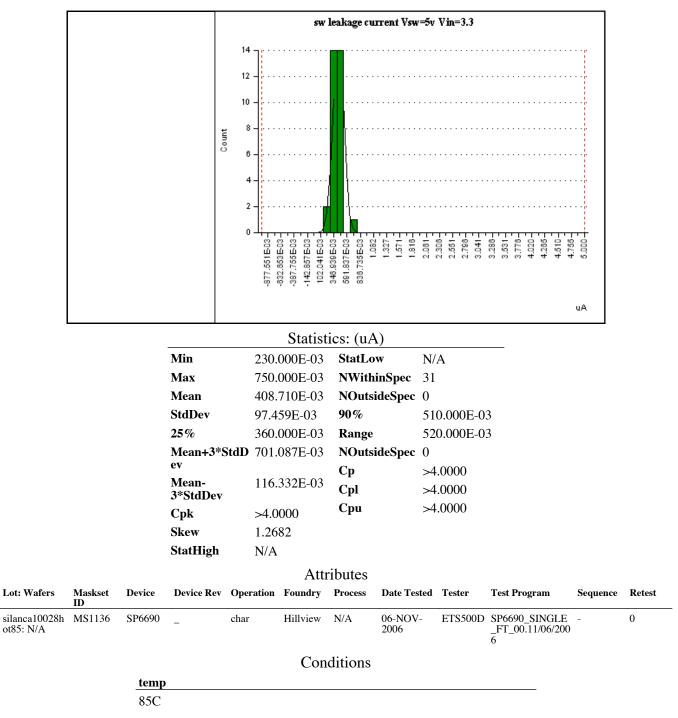
		1	
Λ	ttri	hu	toc
\mathbf{n}	uu	υu	us

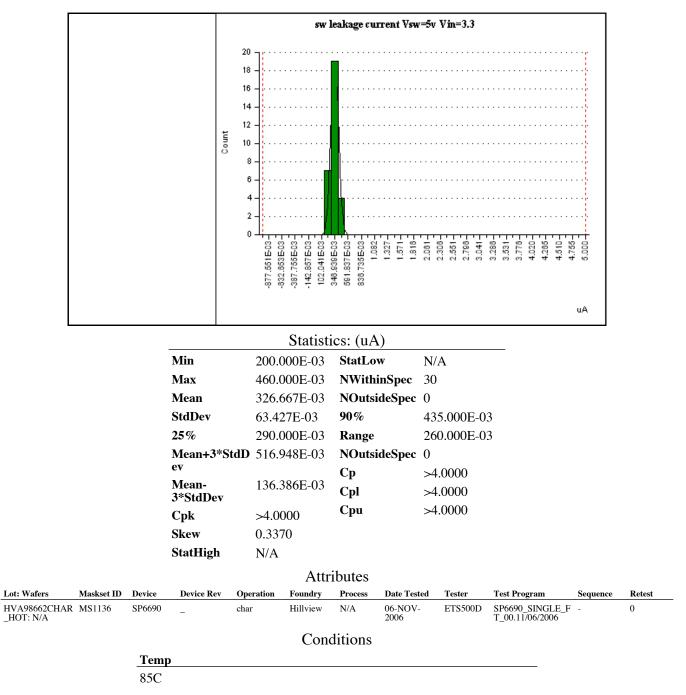
Lot: Wafers	Maskset ID	Device	Device Rev	Operation	Foundry	Process	Date Tested	Tester	Test Program	Sequence	Retest
silanca10028h ot85: N/A	MS1136	SP6690	_	char	Hillview	N/A	06-NOV- 2006	ETS500D	SP6690_SINGLE _FT_00.11/06/200 6	-	0
					Con	ditions					
		temp									

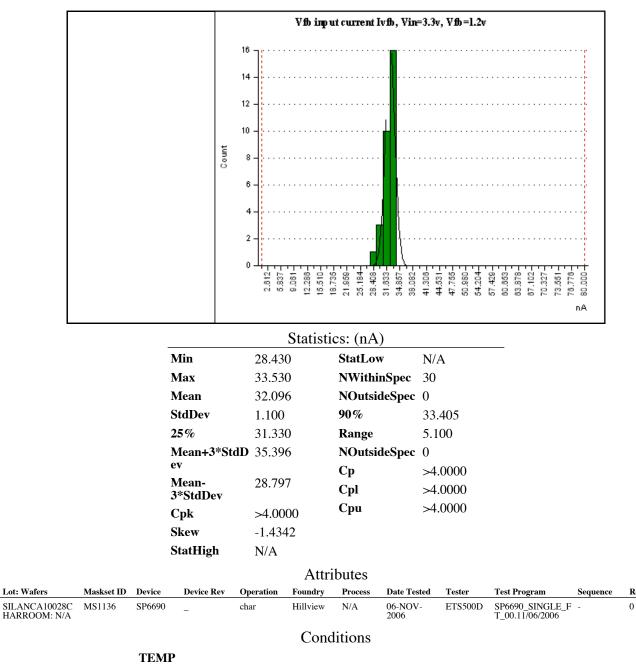
85C

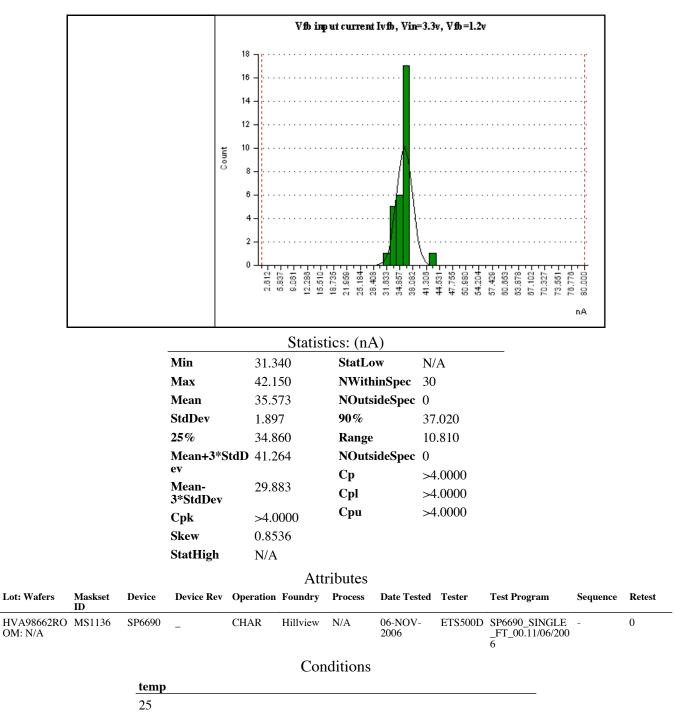


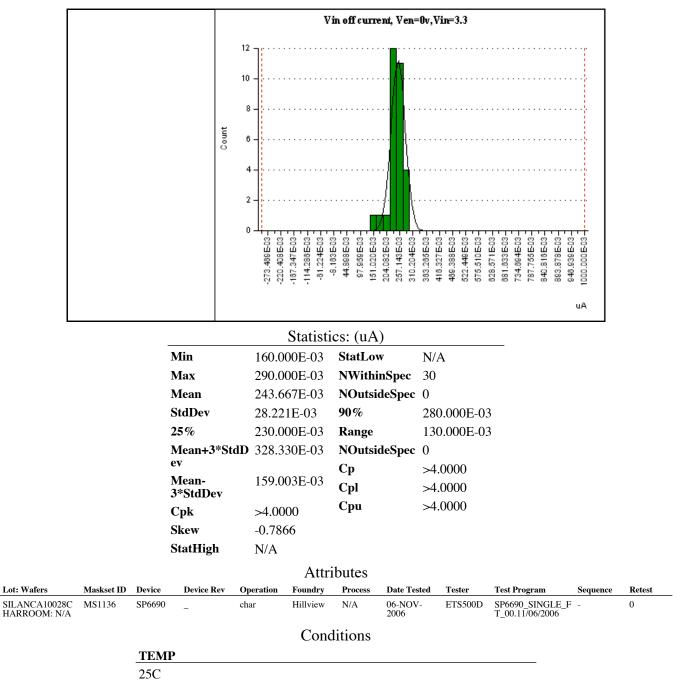

Statistics: (%)

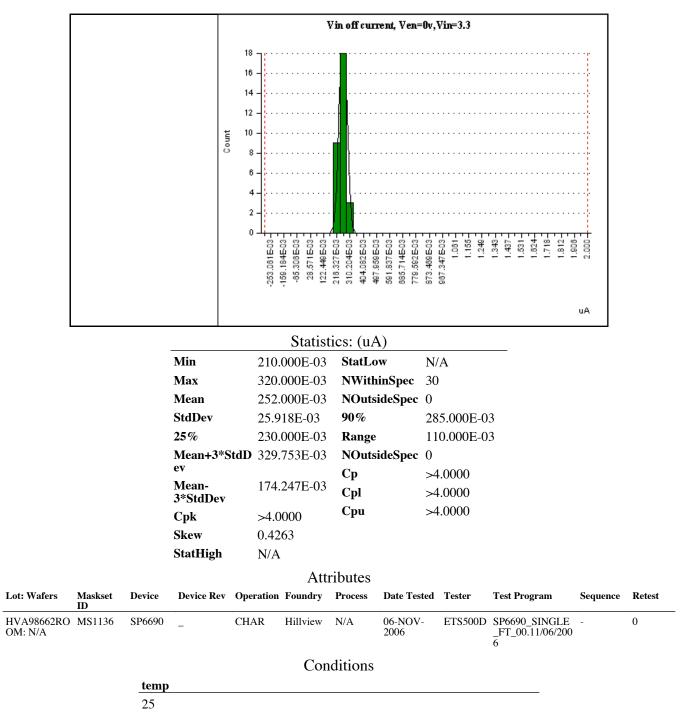

	Dtatisti		
Min	-136.000E-03	StatLow	N/A
Max	-80.000E-03	NWithinSpec	30
Mean	-107.367E-03	NOutsideSpec	0
StdDev	14.114E-03	90%	-90.000E-03
25%	-116.000E-03	Range	56.000E-03
Mean+3*StdD	-65.025E-03	NOutsideSpec	0
ev		Ср	>4.0000
Mean- 3*StdDev	-149.709E-03	Cpl	1.7154
Cpk	1.7154	Сри	>4.0000
Skew	-0.0146		
StatHigh	N/A		


Attributes											
Lot: Wafers	Maskset ID	Device	Device Rev	Operation	Foundry	Process	Date Tested	Tester	Test Program	Sequence	Retest
HVA98662CHAR _HOT: N/A	MS1136	SP6690	-	char	Hillview	N/A	06-NOV- 2006	ETS500D	SP6690_SINGLE_F T_00.11/06/2006	-	0
Conditions											
		Temp									

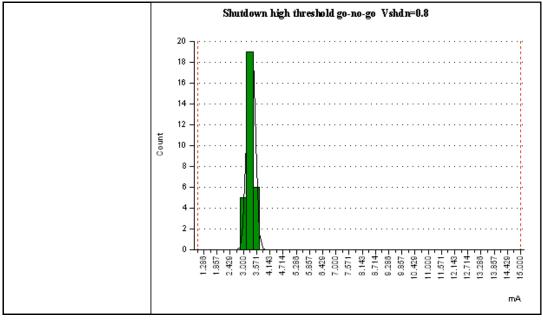

85C

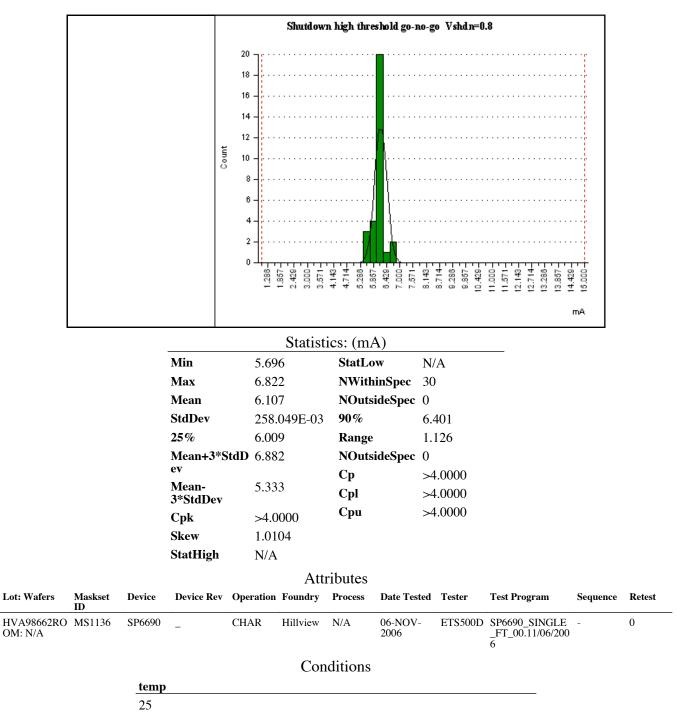


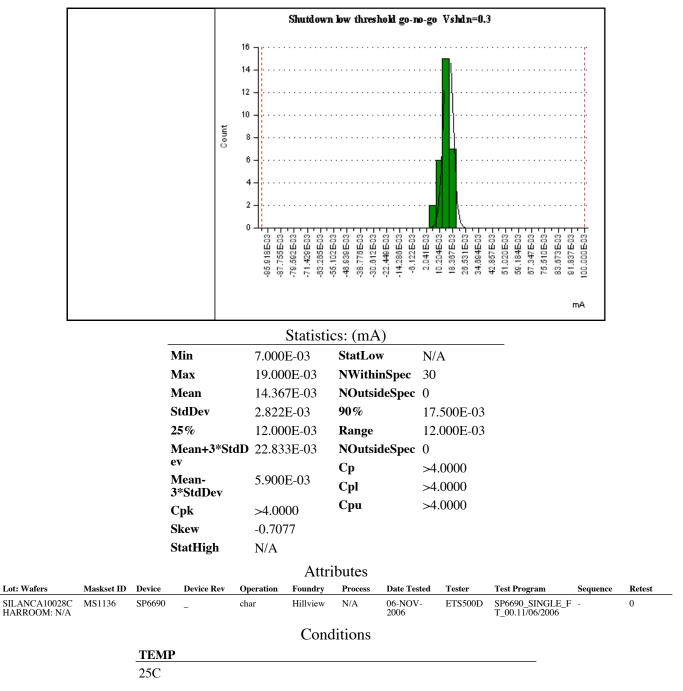



25C

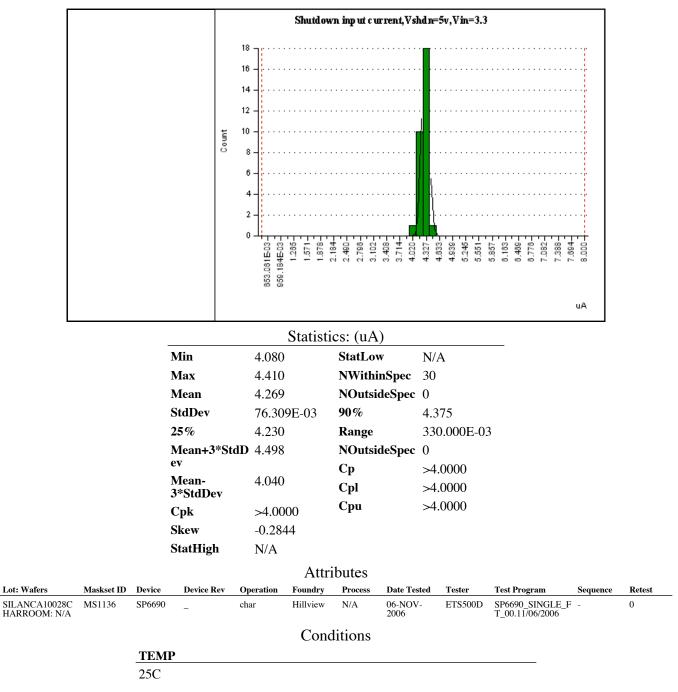
Data: Raw Data


Retest

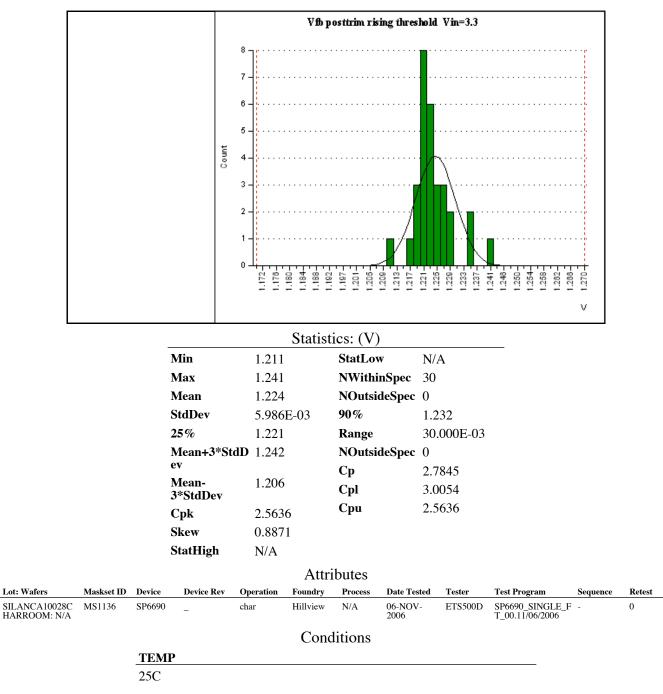

Data: Raw Data

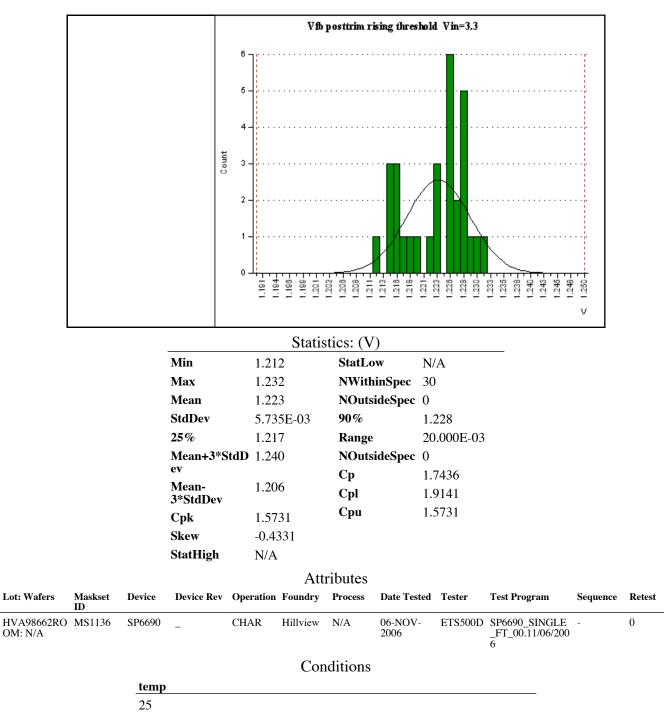


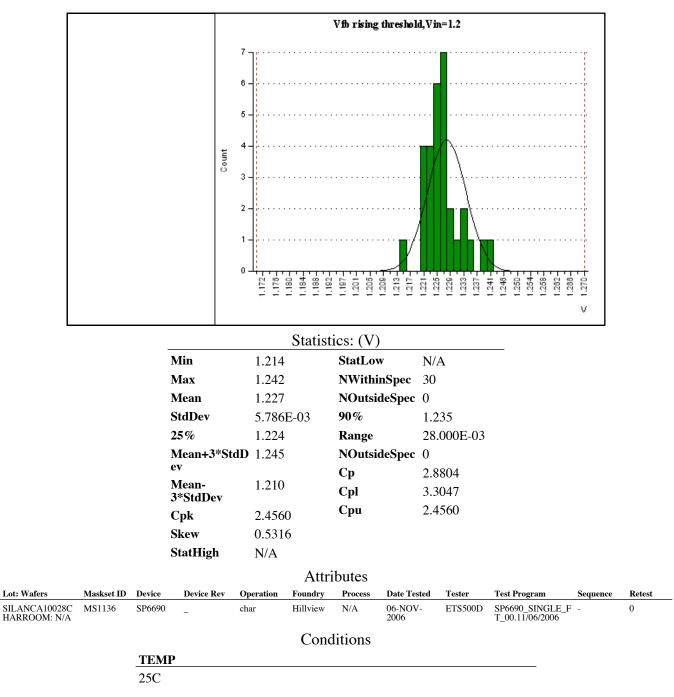
Statistics: (mA)


	Statisti		
Min	2.934	StatLow	N/A
Max	3.622	NWithinSpec	30
Mean	3.294	NOutsideSpec	0
StdDev	160.621E-03	90%	3.526
25%	3.181	Range	688.000E-03
Mean+3*StdD	3.776	NOutsideSpec	0
ev		Ср	>4.0000
Mean- 3*StdDev	2.812	Cpl	>4.0000
Cpk	>4.0000	Сри	>4.0000
Skew	-0.0507		
StatHigh	N/A		
	Attri	ibutes	

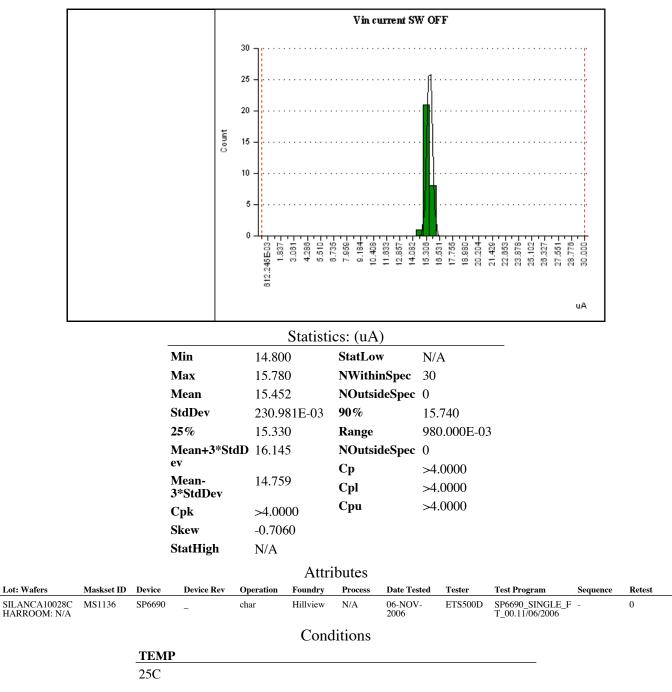
					1 1111	Juies					
Lot: Wafers	Maskset ID	Device	Device Rev	Operation	Foundry	Process	Date Tested	Tester	Test Program	Sequence	Retest
SILANCA10028C HARROOM: N/A	MS1136	SP6690	-	char	Hillview	N/A	06-NOV- 2006	ETS500D	SP6690_SINGLE_F T_00.11/06/2006	-	0
					Cond	litions					
		TEMP									
		25C									

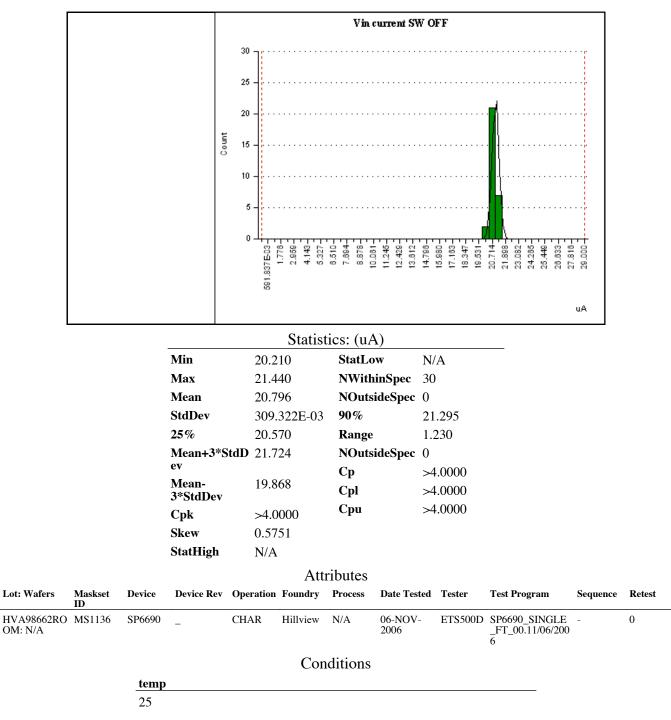


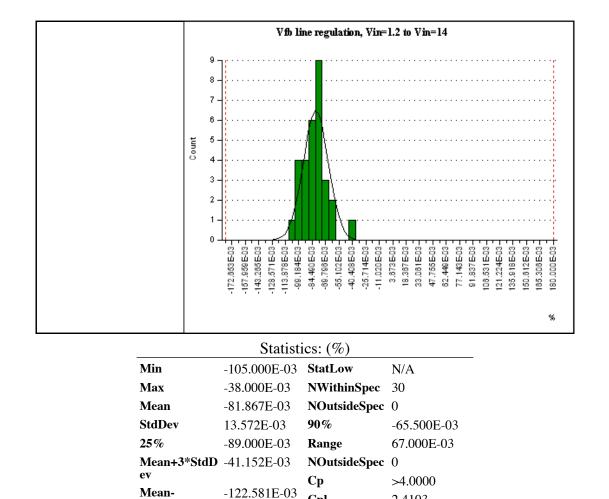

					Shutdo	wn low thre	shold go-r	o-go	Vshdn=0.	3				
			to the		-87.755 E-03 -78.55 E-03 -71.428 E-03 -87.265 E-03		-00012F003- -22.440E03- -14.280E03- -8.122E03-	2.041E03	10.2046-03 18.3676-03 26.5316-03 34.8946-03	42.867E03	50.184E03- 87.347E03- 75.510E03-	83.673E.03-	> 100.000 F 03 +	
l					Statia	tion (m	<u> </u>						^	
			Min	10	.000E-03	tics: (m/ StatLo	•	N/.	'Δ					
			Max		.000E-03		inSpec	30						
			Mean		.633E-03		ideSpec							
			StdDev		076E-03	90%	luespee		.000E-03					
			25%		.000E-03	Range			000E-03					
			Mean+3*S			_	ideSpec							
			ev Mean- 3*StdDev		106E-03	Cp Cpl		>4 >4	.0000					
			Cpk		.0000	Сри		>4	.0000					
			Skew		1789									
			StatHigh	N/										
					At	tributes								
Lot: Wafers	Maskset ID	Device	Device Rev	Operatio	on Foundry	Process	Date Tes	ted	Tester	Test	Program	8	Sequence	Retest
HVA98662RO OM: N/A	MS1136	SP6690	_	CHAR	Hillview	N/A	06-NOV 2006	_	ETS500D	SP66 _FT_ 6	90_SING 00.11/06/	HE - 200	-	0
					Co	nditions								
		temp												
		25												


Г

						Shutd	lown inp ut (current,Vs	hd n=:	5v,Vin=3.3	3		
				Count	$ \begin{array}{c} 18 \\ 16 \\ - \\ 14 \\ 12 \\ - \\ 10 \\ - \\ 0 \\ - \\ 2 \\ - \\ 0 \\ - \\ -$	828.571E03	2.067 2.367 2.343	2.828 - 3.500 - 3.788 -	4.071	4.828	5.500 5.786 6.071 6.367 6.843 6.829		
L						Statis	stics: (u	A)					
			Min		5.5		StatL	/	N/A	4			
			Max					hinSpec	30				
			Mean		5.6	32		sideSpec	0				
			StdDev		73.	597E-03	90%		5.7	50			
			25%		5.5	80	Range	e	270	0.000E-0	3		
			Mean+3*	*Std	D 5.8	53	NOut	sideSpec	0				
			ev				Ср		>4.	0000			
			Mean- 3*StdDev	v	5.4	11	Cpl		>4.	0000			
			Cpk		>4.	0000	Cpu		>4.	0000			
			Skew		0.9								
			StatHigh		N / <i>A</i>								
						At	tributes						
Lot: Wafers	Maskset ID	Device	Device Rev	v O	peratio			Date Tes	sted	Tester	Test Program	Sequence	Retest
HVA98662RO OM: N/A	•	SP6690	_	С	HAR	Hillview	N/A	06-NOV 2006	'_ '	ETS500D	SP6690_SINGLE _FT_00.11/06/200 6	-	0
						Со	nditions						
		temp				20							
		25											




Data: Raw Data

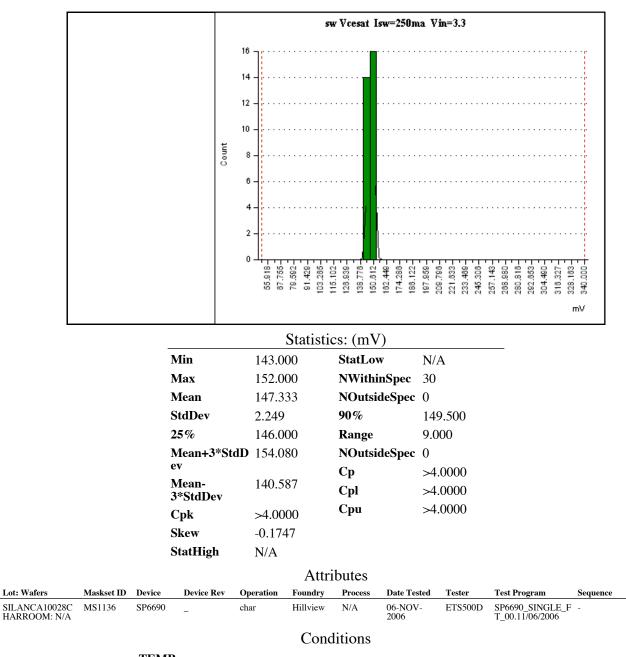


Data: Raw Data

3*StdDev

		S	Cpk Skew StatHigh	2.410 0.960 N/A		Сри	>4.0000				
					Attri	butes					
Lot: Wafers	Maskset ID	Device	Device Rev	Operation	Foundry	Process	Date Tested	Tester	Test Program	Sequence	Retest
SILANCA10028C HARROOM: N/A	MS1136	SP6690	-	char	Hillview	N/A	06-NOV- 2006	ETS500D	SP6690_SINGLE_F T_00.11/06/2006	-	0
					Cond	litions					
		TEMP)								
		25C									

Cpl


Cpu

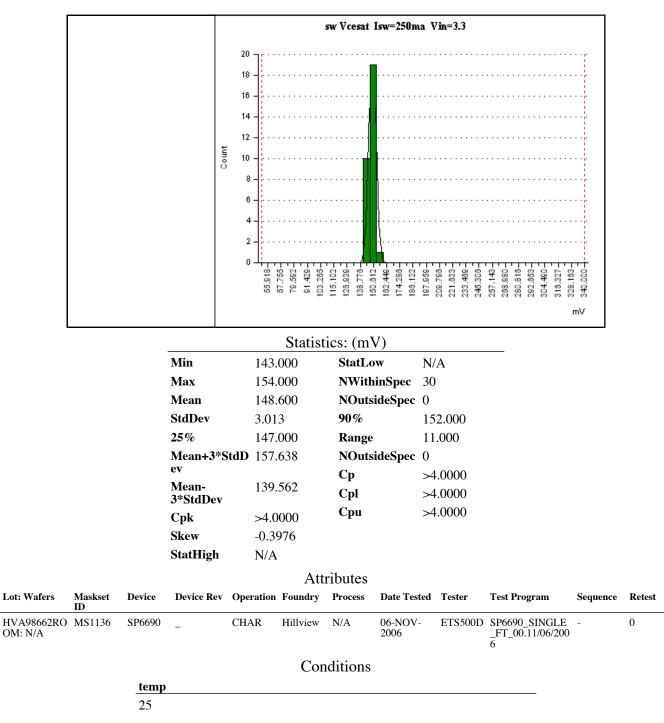
2.4103

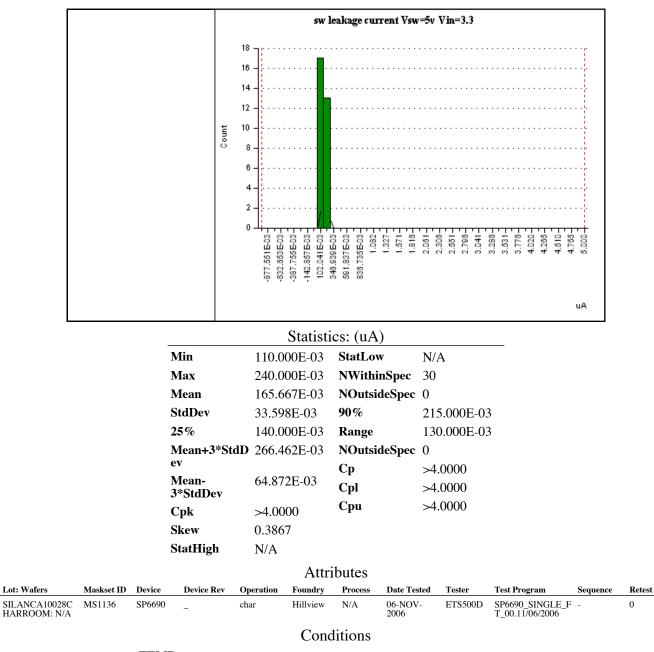
>4.0000

[Vfb	line regu	lation, Vin=	1.2 to Vin=	14				
			Course	4 - · · · 2 - · · ·	-157,968 E 03 - -143,265 E 03 - -128,571 E 03 - -113,878 E 03 -	-89.1894E.03- -84.490E.03- -89.768E.03-	-65.102E03 -40.408E03 -25.714E03 -11.020E03	3.673E03- 18.307E03- 33.001E03- 47.765E03-	62.446E.03	77.1435-03- 91.8375-03- 106.5315-03-	121.224E03- 136.818E03- 160.812E03-	185.300 E 03	
L					Static	stics: (9	76)						
			Min	-67	000E-03	StatL	<i>,</i>	N/A					
			Max		000E-03		thinSpec	30					
			Mean		767E-03		tsideSpec						
			StdDev		676E-03	90%	•	-36.500E	E-03				
			25%		000E-03	Rang	e	39.000E-					
			Mean+3*S			-	tsideSpec						
			ev			Ср	-	>4.0000					
			Mean- 3*StdDev		794E-03	Cpl		3.7752					
			Cpk	3.77	/52	Cpu		>4.0000					
			Skew	-0.1									
			StatHigh	N/A									
			Ũ			ributes	2						
Lot: Wafers	Maskset	Device	Device Rev	Operation		Process		ted Tester		Test Pr	ogram	Sequence	Retest
HVA98662RO OM: N/A	ID MS1136	SP6690	_	CHAR	Hillview	N/A	06-NOV 2006)0D	SP6690)_SINGLE).11/06/200	-	0
					Cor	dition	s						
		temp)		201		-						
		25											

25

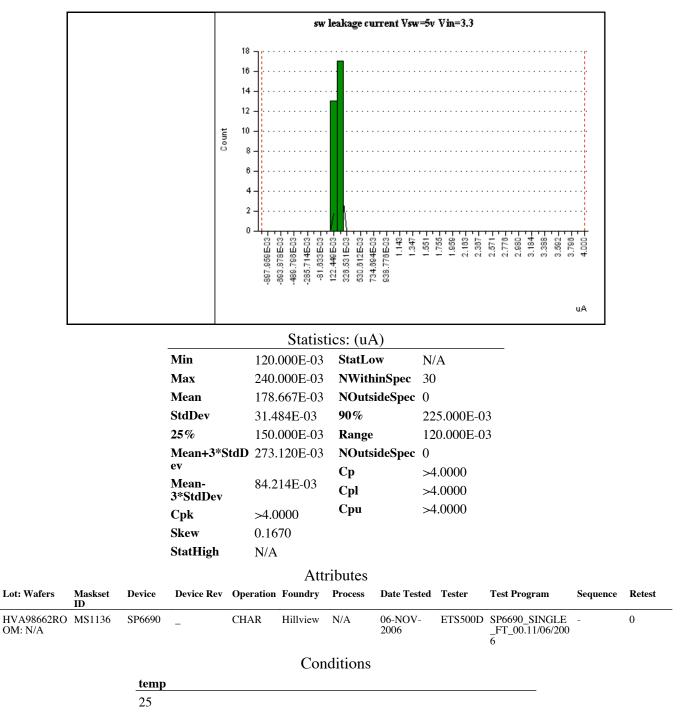
TEMP


Lot: Wafers


25C

Data: Raw Data

Retest


0

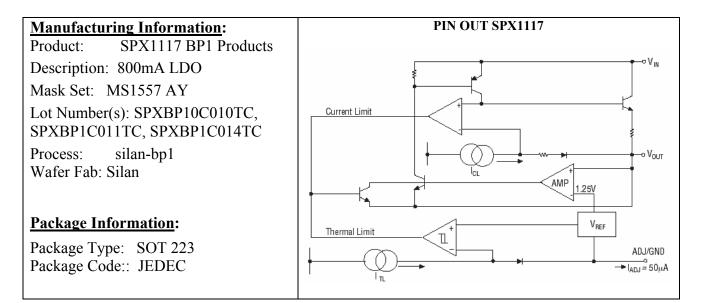
TEMP

25C

Reliability and Qualification Report

Silan BP1 Process Reliability Qualification using the SPX1117

Prepared By: Salvador Wu & Greg West QA Engineering Date: September 15, 2006 Reviewed By: Fred Claussen VP Quality & Reliability Date: September 15, 2006


Table Of Contents

Title Page	1
Table Of Contents	2
Device Description	2
Pin Out	2
Manufacturing Information	2
Package Information	2
Reliability Test Summary	3
Life Test Data	3
FIT Data Calculations	3
MTBF Data Calculations	4
3L SOT 223 Pb Free Package Qualification Addendum	4

Device Description:

The SPX1117 is a low power positive-voltage regulator designed to satisfy moderate power requirements with a cost effective, small footprint solution. This device is an excellent choice for use in battery-powered applications and portable computers. The SPX1117 features very low quiescent current and a low dropout voltage of 1.1V at a full load. As output current decreases, quiescent current flows into the load, increasing efficiency. SPX1117 is available in adjustable or fixed 1.5V, 1.8V, 2.5V, 2.85V, 3.0V, 3.3V and 5V output voltages.

The SPX1117 is offered in several 3-pin surface mount packages: SOT-223, TO-252, TO-220 and TO-263. An output capacitor of 10μ F provides unconditional stability while a smaller 2.2 μ F capacitor is sufficient for most applications.

Stress Level	Device	Lot Number	Burn-In Temp	Sample Size	No. Fail
168Hrs	SPX1117	SPXBP10C0 10TC	125 °C	77	0
168Hrs	SPX1117	SPXBP1C01 1TC	125 °C	77	0
168Hrs	SPX1117	SPXBP1C01 4TC	125 °C	77	0
1000Hrs	SPX1117	SPXBP10C0 10TC	125 °C	77	0
1000Hrs	SPX1117	SPXBP1C01 1TC	125 °C	77	0
1000Hrs	SPX1117	SPXBP1C01 4TC	125 °C	77	0

Reliability Qualification Test Summary:

<u>Life Test</u>

Life testing is conducted to determine if there are any fundamental reliability related failure mechanism(s) present in the device.

These failure mechanisms can be divided roughly into four groups:

- 1. Process or die related failures such as oxide defects, metallization defects, and diffusion defects.
- 2. Assembly related failures such as chip mount defects, wire bond defects, molding defects, and trim/form/singulation defects.
- 3. Design related defects.
- 4. Miscellaneous, undetermined, or application induced failures.

<u>125C Operating Life Test Results</u>

As part of the Sipex design qualification program, the Product/Reliability Engineering group subjected 231 parts to 168 hours and 1000 hours of 125° C life stress testing.

168 Hour Timepoint

The 231 parts were subjected to the life test profile and completed the stress with no failures.

1000 Hour Timepoint

231 parts were reintroduced to life stress testing, completing the 1000 hour HTOL time point without any failures or significant shifts in process parameters

FIT Rate Calculations

FIT rate (failures in time) is the predicted number of failures per billion device hours. This predicted value is based upon,

- The Life Test conditions summarized in the HTOL table (time/temperature, device quantity, failure quantity).
- The Activation Energy (E_a) for potential failure modes. The weighted Activation Energy (E_a) of observed failure mechanisms for Sipex products has been determined to be 0.8eV.

Based on the above criteria SPX1117 product FIT rates for 25°, 55°, and 70°C of operation at 60% and 90% confidence levels have been calculated and listed below.

FIT Failure Rates: SPX1117 BP1 Silan Process

Confidence Level	+25°C	+55°C	+70°C
60%	1.9	28.7	94.5
90%	4.5	69.8	229.6

1 FIT = 1 Failure per Billion Device-Hours

MTBF Calculation: SPX1117 BP1 Silan Process

Confidence Level	+25°C	+55°C	+70°C
60%	5.37E+08	3.48E+07	1.06E+07
90%	2.21E+08	1.43E+07	4.36E+06

ESD Testing

Human Body Model ESD – 45 units were subjected to Human Body Model ESD testing at +/- 2KV. All units passed.

Machine Model ESD – 45 units were subjected to Human Body Model ESD testing at +/-200V. All units passed.

Early Life Failure Rate Testing

Early Life Test – 600 units were subject to Early Life test. All units passed

Additional Reliability Tests

77 of the units were placed on Unbiased HAST testing, 77 of the units were placed on Thermal Shock testing, and 77 on -65C/+150C Temperature Cycle testing. All units passed testing as summarized in the following table.

Test	Condition	Time	Sample Size	# of rejects
TEMP. Cycles	-65C/+150C	500 Cycles	77	0
HAST Unbiased	130C/85%RH	96hrs	77	0
Thermal Shock	-65C/+150C	500 Cycles	77	0

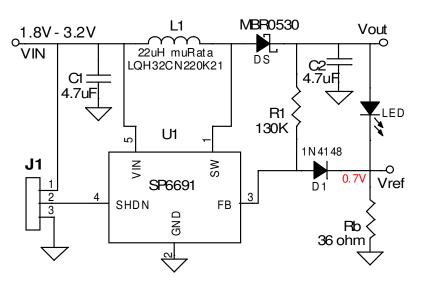
with IOUT = 20mA

Date: June 21, 2006

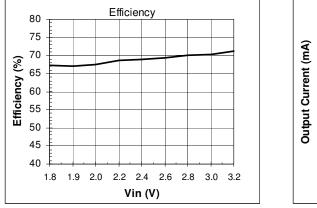
Designed by: Brian Kennedy

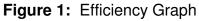
Part Number: SP6691EK

Application Description: 2 Cell Boost to 13V - 14V out at 20mA


Electrical Requirements:

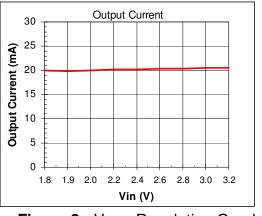
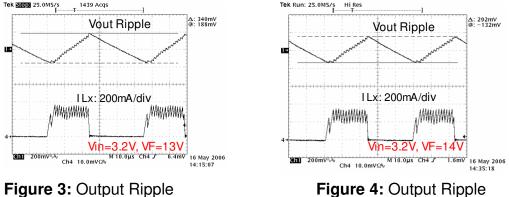
Input Voltage	1.8V to 3.2V
Output Voltage	13V to 14V
Output Current	20mA

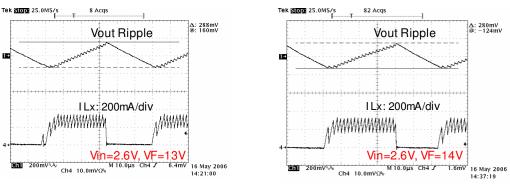
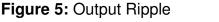

Circuit Description:

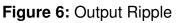

This application has been designed for 2 cell alkaline battery inputs with 13V to 14V outputs driving White LEDs that require improved efficiency, small size and moderate output ripple. The input voltage range is from 1.8V to 3.2V and is boosted to a 13V to 14V output. All the external components have been optimized for an output current of approximately 20mA and have been laid out to optimize for small size and to increase efficiency.

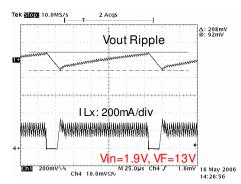
This report includes the application schematic complete with component part numbers and figures 1-9 illustrating electrical performance of the design.

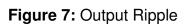
Application Schematic


Figure 2: VOUT Regulation Graph





Jul3-06

Design Solution 28 Page 2 of 3

© Sipex Corporation

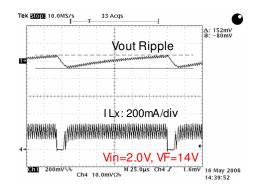


Figure 8: Output Ripple

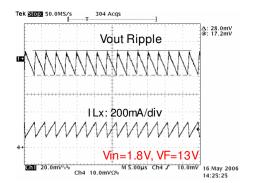


Figure 9: Output Ripple

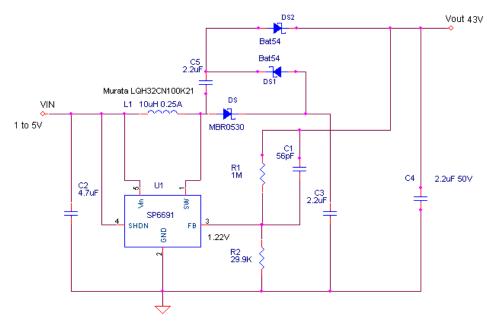
Design Solution #34

High Voltage Boost Regulator with Voltage Doubler

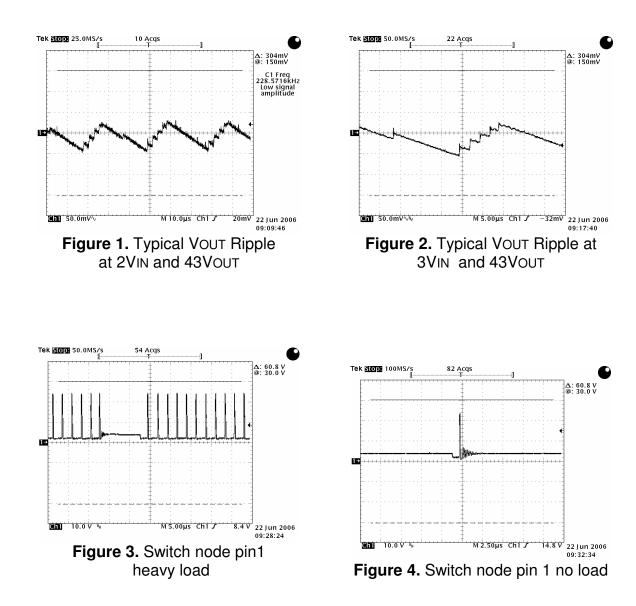
Date: Sept 19, 2006

Designed by: Matthew Szaniawski (mszaniawski@sipex.com)

Part Number: SP6691


Application Description: High voltage boost regulator with charge pump voltage doubler

Electrical Requirements:


Input Voltage	1V to 5V
Output Voltage	up to 60V and $1/2VOUT$ (also available)
Output Current	1uA to 5mA

Circuit Description:

This circuit has been designed to provide a high output voltage with a lower voltage boost regulator by adding a charge pump circuit. This circuit can take a standard 34V boost regulator and make it a 68V boost regulator if needed. All of the testing was done on a VOUT of 43V to demonstrate circuit operation. The other benefit of this circuit is that at the voltage at capacitor C3 is roughly ½ of VOUT. This report includes application schematic, complete Bill of materials and figures 1 through 7 illustrating electrical performance of the design.

Schematic for SP6691@ 43VOUT

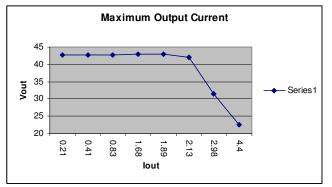


Figure 5. Maximum output current at 1VIN

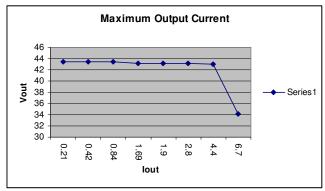


Figure 6. Maximum output current at 2VIN

Figure 7. Maximum output current at 3VIN

	Evaluation List of Materials 3/3/						3/3/2006
Line	Ref.	Qty.	Manuf.	Manuf.	Layout	Component	Vendor
No.	Des.			Part Number	Size		Phone Number
2	U1	1	Sipex	SP6691EK	SOT-23-5	Boost regulator	978-667-7800
3	DS	1	On Semi	MBR530	SOD-323	Schottky Diode	
4	L1	1	Murata	LQH32CN100K21	3.2X2.5X2mm	10uH Inductor	770-436-1300
5	C3 C4 C5	3	Murata	GRM43ER71H225K	1206	2.2uF Ceramic X7R 50V	770-436-1300
7	C1	1	Murata	GRM1885C1H560JA01B	603	56pF Capacitor	770-436-1300
8	DS1 DS2	1	Central Semi	BAT54C	SOT-23	Dual Diode Schottky	
9	R1	1	Panasonic	ERJ-3EKF1005V	0603	1M Ohm Thick Film Res 1%	800-344-4539
10	R2	1	Panasonic	ERJ-3EKF2992V	0603	29.9K Ohm Thick Film 1%Res 1%	800-344-4539
11	C4	1	Murata	GRM32RR71E225KC01B	1206	4.7uF capacitor	770-436-1300

Figure 8. Bill Of Materials

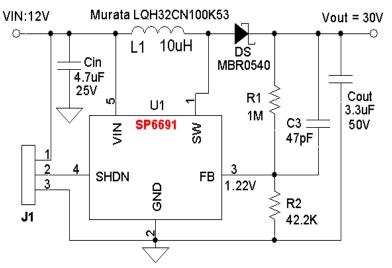
Design Solution #53

SP6691 : 12V input to 30V output at 40mA

Designed by: Brian Kennedy

Part Number: SP6691EK

Application Description: 12V input to 30V output at 40mA


Electrical Requirements:

Input Voltage	12V
Output Voltage	30V
Output Current	40mA

Circuit Description:

This application has been designed for 12V input to 30V output at about 40mA load with low output ripple. The SP6691 is a DC/DC switching regulator that can boost from an input as high as 13.5V to an output up to 30V, using 10uH inductor , internal charge switch, external schottky diode and relatively small input and output capacitors. The SP6691 uses Pulse Frequency Modulation (PFM) control for low 20uA quiescent current and a simple comparator driven voltage mode output control that can work with ceramic, tantalum or electrolytic capacitors without any external compensation components needed. The results were a relatively low output ripple for the large 30V output level, which can be very useful for tuner or other low noise applications. To lower the ripple, an additional 3.3uF ceramic capacitor can be added. This report includes data in figures 1-6 showing the input and output ripple for the various output capacitors added as well as efficiency data and BOM.

Schematic:

Vin	lin	Vout	lout	Ripple	Effi
(V)	(mA)	(V)	(mA)	(mV)	(%)
12.0	3.28	30.56	1.00	430	77.6
12.0	32.13	30.79	10.00	480	79.9
12.0	64.30	30.92	20.00	500	80.1
12.0	95	30.95	30.03	304	81.5
12.0	126	30.71	40.00	356	81.2

Table 1: Ripple & Efficiency Data

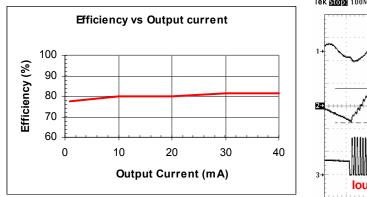


Figure 1: Efficiency Curve

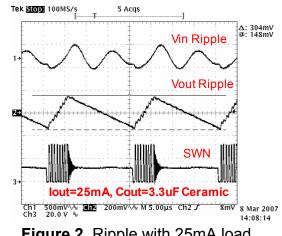


Figure 2. Ripple with 25mA load

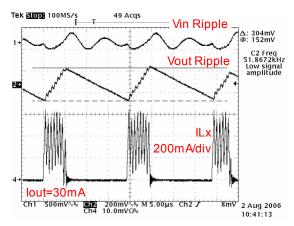


Figure 3. Ripple with 30mA Load

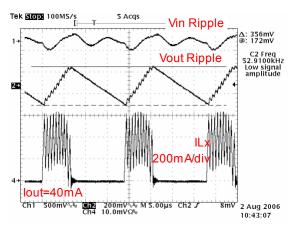


Figure 4. Ripple with 40mA Load

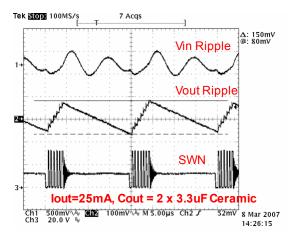
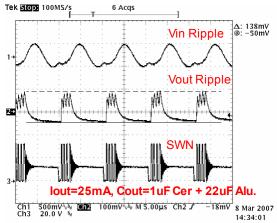



Figure 5. Ripple with Cout = 2 parallel 3.3uF Cer.

Figure 6. Ripple with Cout = 1uF cer. in parallel with 22uF Aluminum Electrolytic

Table 2	2. BOM
---------	--------

SP6691 Evaluation Board Rev. 00 List of Materials						3/23/07	
Line	Ref.	Qty.	Manuf.	Manuf.	Layout	Component	Vendor Phone
No.	Des.			Part Number	Size		Number
2	U1	1	Sipex	SP6691EK	SOT-23-5	Boost regulator	408-934- 7500
3	DS	1	On Semi	MBR540	SOD-323	Schottky Diode 0.5A 40V	
4	L1	1	Murata	LQH32CN100K21	3.2x2.5x1.55mm	10uH Inductor	770-436- 1300
5	Cin	3	Murata	-	0805	4.7uF Ceramic X5R 25V	770-436- 1300
7	C3	1	Murata	-	603	47pF Capacitor	770-436- 1300
9	R1	1	Any	-	0603	1M Ohm Thick Film Res 1%	-
10	R2	1	Any	-	0603	42.2K Ohm Thick Film 1%Res 1%	-
11	COUT	1	TDK	-	1210	3.3uF X5R	-
11	COUT	1	TDK	-	1206	1uF X5R	-
11	COUT	1	Any	-	-	22uF Al El	-

For further assistance:

Email: WWW Support page: Sipex Application Notes:

Sipexsupport@sipex.com http://www.sipex.com/content.aspx?p=support http://www.sipex.com/applicationNotes.aspx

Sipex Corporation Headquarters and Sales Office 233 South Hillview Drive Milpitas, CA95035 tel: (408) 934-7500 fex: (408) 935-7500

faX: (408) 935-7600

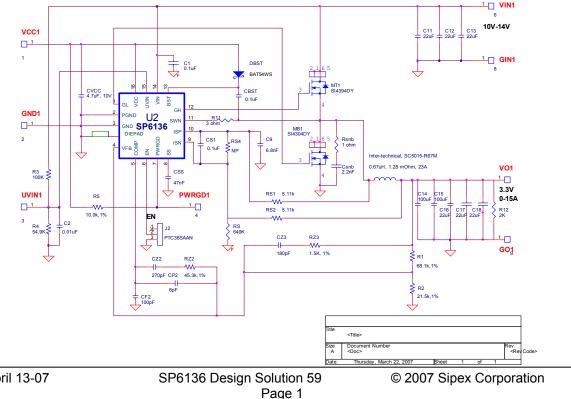
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

Designed by: Shahin Maloyan

Part Number: SP6136ER1

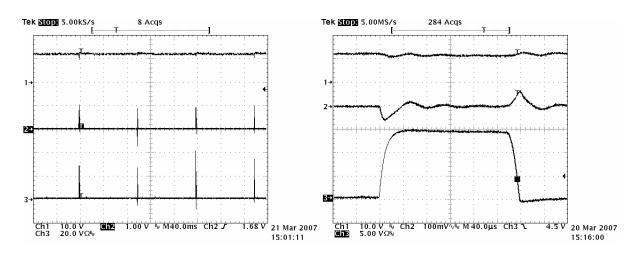
Application Description: 12V input to 3.3V output at 15mA

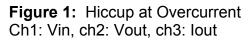
Electrical Requirements:

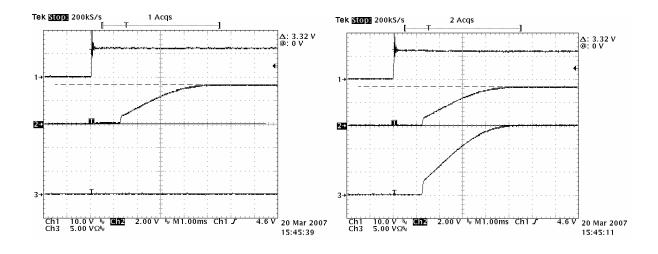

Input Voltage	12V
Output Voltage	3.3V
Output Current	15A
Step Load	60mV response to 15A step

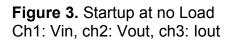
Circuit Description:

This buck converter has been designed to provide 3.3V output at 15A with a low 60mV transient response to a 15A step. The SP6136 is a high performance buck regulator controller that provides all necessary functions required by a buck regulator: over-current protection, power-good output, adjustable UVLO and Enable input. High switching frequency (600kHz) minimizes solution cost and size.


This report includes the application schematic complete with component part numbers and figures 1-4 illustrating electrical performance of the design.


Schematic:


Vin (V)	lin (A)	Vout (V)	lout (A)	Efficiency(%)
12.000	0.098	3.335	0	
12.000	0.240	3.335	0.5	57.9
12.000	0.383	3.335	1	72.5
12.000	0.672	3.335	2	82.7
12.000	1.254	3.335	4	88.6
12.000	1.835	3.335	6	90.8
12.000	2.422	3.336	8	91.8
12.000	3.019	3.336	10	92
12.000	3.324	3.336	11	92
12.000	3.630	3.336	12	91.9
12.000	4.247	3.337	14	91.6
12.000	4.562	3.337	15	91.4


Table 1:	Efficiency and	regulation Data
----------	----------------	-----------------

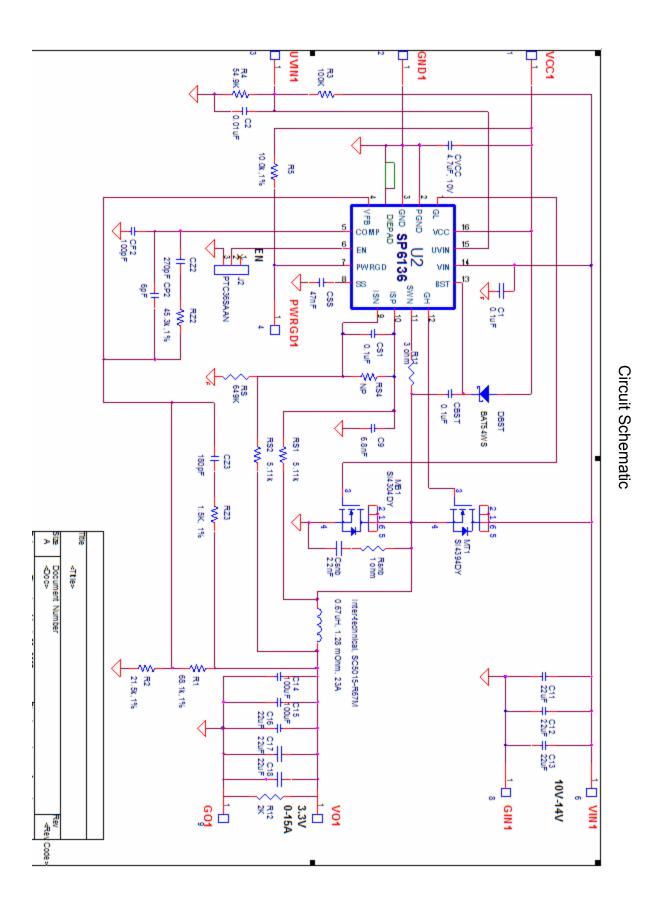
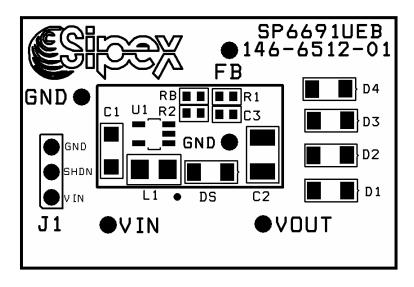


Figure 2. 60mV response to 0-15A Step Ch1: Vin, ch2: Vout, ch3: lout

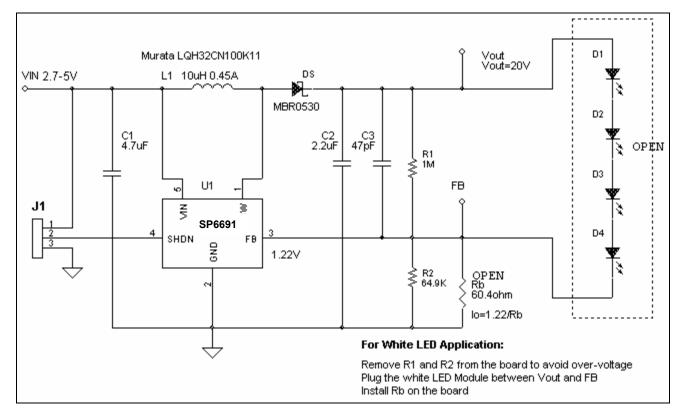
Figure 4. Startup at 15A Ch1: Vin, ch2: Vout, ch3: lout

For further assistance:

Email: WWW Support page: Sipex Application Notes: <u>Sipexsupport@sipex.com</u> <u>http://www.sipex.com/content.aspx?p=support</u> <u>http://www.sipex.com/applicationNotes.aspx</u>


Sipex Corporation Headquarters and Sales Office 233 South Hillview Drive Milpitas, CA95035 tel: (408) 934-7500 fax: (408) 935-7600

Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.


- Ideal for series white LED driver
- High output voltage, up to 30V
- Low quiescent current: 20uA
- Ultra low shutdown current: 10nA
- High Efficiency: up to 80%
- SOT23-5 Package & SMT components for small, low profile Power Supply

SP6691EB Evaluation Board Manual

DESCRIPTION AND BOARD SCHEMATIC

The **SP6691EB Evaluation Board** is designed to help the user evaluate the performance of the SP6691EB as a series white LED driver. The evaluation board is a completely assembled and tested surface mount board which provides easy probe access points to all SP6691EB Inputs and Outputs so that the user can quickly connect and measure electrical characteristics and waveforms.

USING THE EVALUATION BOARD

1) Powering Up the SP6691EB Circuit

The SP6691EB Evaluation Board can be powered from inputs from a +1.2V to +5.0V. Connect with short leads directly to the "VIN" and "GND" posts. Monitor the Output Voltage and connect the Load between the "VOUT" post and the "GND" post.

2) Using the J1 Jumper: Enabling the SP6691EB Output and using the Shutdown Mode

The SP6691EB output will be enabled if the J1 Jumper is in the bottom or pin 1 to 2 position. If J1 is in the pin 2 to 3 or top position, the Shutdown pin is brought to GND, which puts the SP6691EB in the low quiescent Shutdown Mode.

3) Using the Posts

Since the part might get damaged when the output is open loop, two divider resistors (R_1 =1M, R_2 =64.9K) are used to provide the feedback loop and set the output voltage. For the white LEDs application, these two resistors (R_1 , R_2) need to be removed from the evaluation board first to avoid overvoltage and then plug the white LED module between "VOUT" and "FB" posts. The bias resistor R_b should also be installed on the board.

4) Inductor Selection

For SP6691EB, the internal switch will be turned off only after the inductor current reaches the typical dc current limit (I_{LIM} =450mA). However, there is typically propagation delay of 200nS between the time when the current limit is reached and when the switch is actually turned off. During this 200nS delay, the peak inductor current will increase, exceeding the current limit by a small amount. The peak inductor current can be estimated by:

$$I_{pk} = I_{LIM} + \frac{V_{in(max)}}{L} \cdot 200nS$$

The larger the input voltage and the lower the inductor value, the greater the peak current. In selecting an inductor, the saturation current specified for the inductor needs to be greater than the SP6691EB peak current to avoid saturating the inductor, which would result in a loss in efficiency and could damage the inductor.

Choosing an inductor with low DCR decreases power losses and increase efficiency.

Refer to Table 1 for some suggested low ESR inductors.

MANUFACTURE	PART NUMBER	DCR (Ω)	Current Rating (mA)
MURATA 770-436-1300	LQH32CN100K11 (10uH)	0.3	450
TDK 847-803-6100	NLC453232T-100K (22uH)	0.55	500

Table 1. Suggested Low ESR inductor

5) Diode Selection

A schottky diode with a low forward drop and fast switching speed is ideally used here to achieve high efficiency. In selecting a Schottky diode, the current rating of the schottky diode should be larger than the peak inductor current. Moreover, the reverse breakdown voltage of the schottky diode should be larger than the output voltage.

6) Capacitor Selection

Ceramic capacitors are recommended for their inherently low ESR, which will help produce low peak to peak output ripple, and reduce high frequency spikes.

For the typical application, 4.7uF input capacitor and 2.2uF output capacitor are sufficient. The input and output ripple could be further reduced by increasing the value of the input and output capacitors. Place all the capacitors as close to the SP6691EB as possible for layout. For use as a voltage source, to reduce the output ripple, a small feedforward (47pF) across the top feedback resistor can be used to provide sufficient overdrive for the error comparator, thus reducing the output ripple.

Refer to Table 2 for some suggested low ESR capacitors.

Table 2. Suggested Low ESR capacitor

MANUFACTURE	PART NUMBER	CAP /VOLTAGE	SIZE /TYPE
MURATA	GRM32RR71E	2.2uF	1210
770-436-1300	225KC01B	/25V	/X5R
MURATA	GRM31CR61A	4.7uF	1206
770-436-1300	475KA01B	/10V	/X5R
TDK	C3225X7R1E	2.2uF	1210
847-803-6100	225M	/25V	/X7R
TDK	C3216X5R1A	4.7uF	1206
847-803-6100	475K	/10V	/X5R

7) LED Current Program

In the white LEDs application, the SP6691EB is generally programmed as a current source. The bias resistor R_b is used to set the operating current of the white LED using the equation:

 $R_{b} = \frac{V_{FB}}{I_{F}}$

where V_{FB} is the feedback pin voltage (1.22V), I_F is the operating current of the White LEDs. In order to achieve accurate LED current, 1% precision resistors are recommended. Table 3 below shows the R_b selection for different white LED currents. For example, to set the operating current to be 20mA, R_b is selected as 60.4 Ohm, as shown in the schematic.

Table 3. Bias Resistor Selection

I _F (mA)	R _b (Ω)
5	243
10	121
12	102
15	80.6
20	60.4

8) Vout Programming

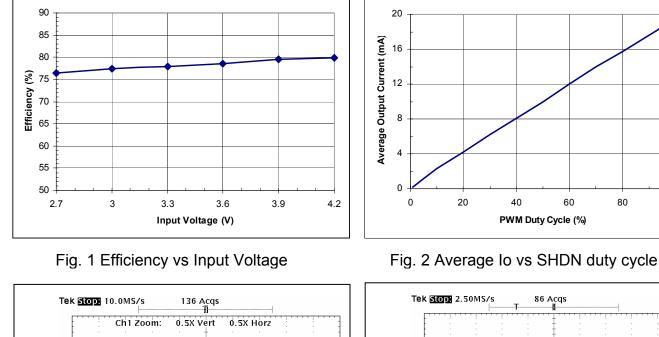
The SP6691EB can be programmed as either a voltage source or a current source. To program the SP6691 as voltage source, the SP6691 requires 2 feedback resistors R_1 & R_2 to control the output voltage. The formula for the resistor selection are shown below.

$$\mathbf{R}_1 = \left(\frac{\mathbf{V}_{\text{out}}}{1.22} - 1\right) \bullet \mathbf{R}_2$$

9) Open Circuit Protection

When any white LED inside the white LED module fails or the LED module is disconnected from the circuit, the output and the feedback control will be open, thus resulting in a high output voltage, which may cause the SW pin voltage to exceed it maximum rating. In this case, a zener diode can be used at the output to limit the voltage on the SW pin and protect the part. The zener voltage should be larger than the maximum forward voltage of the White LED module.

10) Brightness Control


Dimming control can be achieved by applying a PWM control signal to the EN/PWM pin. The brightness of the white LEDs is controlled by increasing and decreasing the duty cycle of The PWM signal. A 0% duty cycle corresponds to zero LED current and a 100% duty cycle corresponds to full load current. While the operating frequency range of the PWM control is from 60Hz to 700Hz, the recommended maximum brightness frequency range of the PWM signal is from 60Hz to 200Hz. A repetition rate of at least 60Hz is required to prevent flicker. The magnitude of the PWM signal should be higher than the minimum SHDN voltage high.

11) Layout Consideration

Both the input capacitor and the output capacitor should be placed as close as possible to the IC. This can reduce the copper trace resistance which directly affects the input and output ripples. The feedback resistor network should be kept close to the FB pin to minimize copper trace connections that can inject noise into the system. The ground connection for the feedback resistor network should connect directly to the GND pin or to an analog ground plane that is tied directly to the GND pin. The inductor and the schottky diode should be placed as close as possible to the switch pin to minimize the noise coupling to the other circuits, especially the feedback network.

POWER SUPPLY DATA

For the standard evaluation board (4x20mA series white LEDs application), in which the output voltage is around 15V and output current is 20mA, the power supply data is provided in Fig 1. to Fig. 4. The white LEDs used here were from LUMEX (Part Number: SML-LX2832UWC-TR).

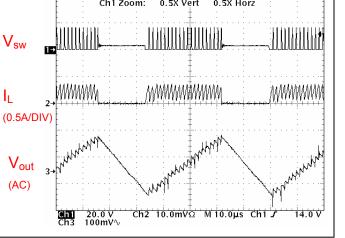
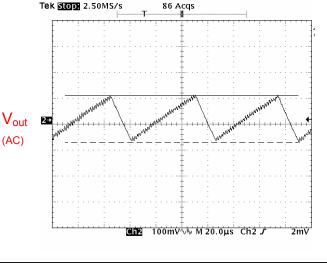



Fig. 3 Typical Switching Waveform $(V_{in}=3.3V)$

60

80

100

Fig. 4 Output Ripple (V_{in}=2.7V)

EVALUATION BOARD LAYOUT

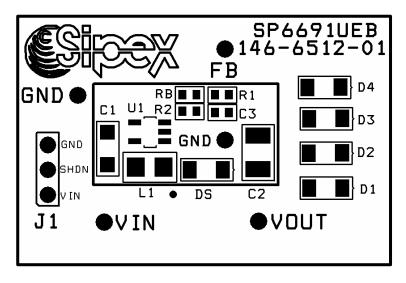


FIGURE 1: SP6691EB COMPONENT PLACEMENT

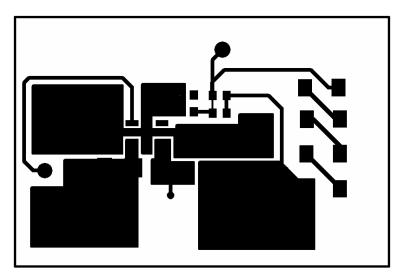


FIGURE 2: SP6691EB PC LAYOUT TOP SIDE

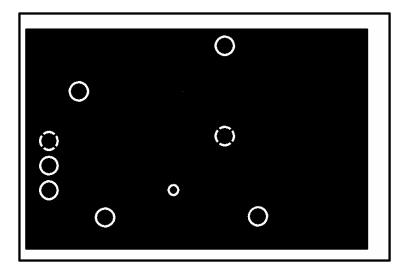


FIGURE 3: SP6691EB PC LAYOUT BOTTOM SIDE

TABLE1: SP6691EB LIST OF MATERIALS

SP6691 Evaluation Board List of Materials							
Ref. Des.	Qty.	Manufacturer	Part Number	Layout Size LxWxH	Component	Vendor	
	1	Sipex Corp.	146-6512-00	1"x1.5"	SP6690 Eval PC Board	Sipex 978-667-8700	
U1	1	Sipex Corp.	SP6691EK	SOT23-5	5-pin SOT23 Step-Up DC/DC Conv	Sipex 978-667-8700	
C1	1	Murata	GRM31CR61A475KA01B	1206	Ceramic 10V 4.7uF SM	Murata 770-436-1300	
C2	1	Murata	GRM32RR71E225KC01B	1210	Ceramic 25V 2.2uF SM	Murata 770-436-1300	
C3	1	Murata	GRM1885C1H470JA01B	603	Ceramic 47pF SM	Murata 770-436-1300	
L1	1	Murata	LQH32CN100K11	3.2X2.5X2mm	10uH, 0.45A, 0.3 Ohm, SM Inductor	Murata 770-436-1300	
R1	1	Panasonic	ERJ-3EKF1004	603	1M Ohm 1/16W 1% 0603 SM	800-Digi-Key	
R2	1	Panasonic	ERJ-3EKF6492	603	64.9K Ohm 1/16W 1% 0603 SM	800-Digi-Key	
Rb	1	Panasonic	ERJ-3EKF60R4V	603	Open	800-Digi-Key	
DS	1	On-Semi	MBR-0530	SOD-123	Schottky Diode 30V, 0.5A	Onsemi	
D1-D4	1			SOD-123	Open		
TP	5	Mill-Max	0300-115-01-4727100	.042 Dia	Test Point Female Pin	800-Digi-Key	
J1	1	Sullins	PTC36SAAN	.23x.12	2-Pin Header	800-Digi-Key	

ORDERING INFORMATION

Model	Temperature Range	Package Type
SP6691EB SP6691EU		SP6691 Evaluation Board 5-pin SOT-23