- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers - Package Options Include Plastic Small-Outline Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs # description These octal buffers and line drivers are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. Taken together with the 'F240 and 'F244, these devices provide the choice of selected combinations of inverting and noninverting outputs, symmetrical \overline{OE} (active-low output-enable) inputs, and complementary OE and \overline{OE} inputs. The SN54F241 is characterized for operation over the full military temperature range of -55° C to 125°C. The SN74F241 is characterized for operation from 0°C to 70°C. #### SN54F241 . . . J PACKAGE SN74F241 . . . DW OR N PACKAGE (TOP VIEW) # SN54F241 . . . FK PACKAGE (TOP VIEW) #### **FUNCTION TABLES** | INP | JTS | ОИТРИТ | |-----|-----|--------| | 10E | 1A | 1Y | | Н | Χ | Z | | L | Н | н | | L | L | L | | INP | JTS | OUTPUT | |-----|-----|--------| | 20E | 2A | 2Y | | Н | Н | Н | | Н | L | L | | L | X | Z | # logic symbol† [†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. # logic diagram (positive logic) # absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡ | Supply voltage range, V _{CC} | 0.5 V to 7 V | |--|--------------------------| | Input voltage range, V _I (see Note 1) | | | Input current range | –30 mA to 5 mA | | Voltage range applied to any output in the disabled or power-off state | 0.5 V to 5.5 V | | Voltage range applied to any output in the high state | 0.5 V to V _{CC} | | Current into any output in the low state: SN54F241 | 96 mA | | SN74F241 | 128 mA | | Operating free-air temperature range: SN54F241 | –55°C to 125°C | | SN74F241 | 0°C to 70°C | | Storage temperature range | –65°C to 150°C | [‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: The input voltage ratings may be exceeded provided the input current ratings are observed. # recommended operating conditions | | | S | N54F24 | 1 | S | UNIT | | | |-----------------|--------------------------------|-----|--------|------|-----|------|------|------| | | | MIN | NOM | MAX | MIN | NOM | MAX | UNII | | VCC | Supply voltage | 4.5 | 5 | 5.5 | 4.5 | 5 | 5.5 | V | | VIH | High-level input voltage | 2 | | | 2 | | | V | | V _{IL} | Low-level input voltage | | | 0.8 | | | 0.8 | V | | ΙΙΚ | Input clamp current | | | -18 | | | -18 | mA | | IOH | High-level output current | | | - 12 | | | - 15 | mA | | loL | Low-level output current | | | 48 | | | 64 | mA | | TA | Operating free-air temperature | -55 | | 125 | 0 | | 70 | °C | # electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | DADAMETER | TEG | TEST CONDITIONS | | | 1 | S | | | | | |-----------------------|----------------------------|---------------------------|------|------------------|------------|------|------------------|------------|----------|--| | PARAMETER | TEST CONDITIONS | | | TYP [†] | MAX | MIN | TYP [†] | MAX | UNIT | | | VIK | V _{CC} = 4.5 V, | I _I = –18 mA | | | -1.2 | | | -1.2 | V | | | | | $I_{OH} = -3 \text{ mA}$ | 2.4 | 3.3 | | 2.4 | 3.3 | | | | | V | V _{CC} = 4.5 V | $I_{OH} = -12 \text{ mA}$ | 2 | 3.2 | | | | | V | | | VOH | | $I_{OH} = -15 \text{ mA}$ | | | | 2 | 3.1 | | V | | | | $V_{CC} = 4.75 \text{ V},$ | $I_{OH} = -3 \text{ mA}$ | | | | 2.7 | | | 7 | | | V | V45V | I _{OL} = 48 mA | | 0.38 | 0.55 | | | | V | | | V _{OL} | V _{CC} = 4.5 V | $I_{OL} = 64 \text{ mA}$ | | | | | 0.42 | 0.55 | V | | | lozh | V _{CC} = 5.5 V, | V _O = 2.7 V | | | 50 | | | 50 | μΑ | | | lozL | V _{CC} = 5.5 V, | V _O = 0.5 V | | | -50 | | | -50 | μA
mA | | | lį | V _{CC} = 5.5 V, | V _I = 7 V | | | 0.1 | | | 0.1 | | | | lн | V _{CC} = 5.5 V, | V _I = 2.7 V | | | 20 | | | 20 | μΑ | | | OE or OE | V 55V | V. 05.V | | | – 1 | | | – 1 | mA | | | I _{IL} Any A | $V_{CC} = 5.5 \text{ V},$ | V _I = 0.5 V | | - 1.6 | | _ | | - 1.6 | mA | | | los [‡] | V _{CC} = 5.5 V, | V _O = 0 | -100 | | -225 | -100 | | -225 | mA | | | | | Outputs high | | 40 | 60 | | 40 | 60 | | | | Icc | V _{CC} = 5.5 V | Outputs low | | 60 | 90 | | 60 | 90 | mA | | | | | Outputs disabled | | 60 | 90 | | 60 | 90 | | | [†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. [‡] Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second. # SN54F241, SN74F241 OCTAL BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SDFS090 - MARCH 1987 - REVISED OCTOBER 1993 # switching characteristics (see Note 2) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | $V_{CC} = 5 \text{ V},$ $C_{L} = 50 \text{ pF},$ $R_{L} = 500 \Omega,$ $T_{A} = 25^{\circ}\text{C}$ | | | V_{CC} = 4.5 V to 5.5 V,
C_L = 50 pF,
R_L = 500 Ω ,
T_A = MIN to MAX [†] | | | | UNIT | |------------------|-----------------|----------------|---|-----|-----|---|------|----------|-----|------| | | | | ′F241 | | | SN54 | F241 | SN74F241 | | | | | | | MIN | TYP | MAX | MIN | MAX | MIN | MAX | | | ^t PLH | Any A | Υ | 1.7 | 3.6 | 5.2 | 1.2 | 6.5 | 1.7 | 6.2 | ns | | t _{PHL} | Ally A | | 1.7 | 3.6 | 5.2 | 1.2 | 7 | 1.7 | 6.5 | | | ^t PZH | OE or OE | Y | 1.2 | 3.9 | 5.7 | 1.2 | 7 | 1.2 | 6.7 | 20 | | t _{PZL} | OE OF OE | | 1.2 | 5 | 7 | 1.2 | 8.5 | 1.2 | 8 | ns | | t _{PHZ} | OE or OE | Y | 1.2 | 4.1 | 6 | 1.2 | 7 | 1.2 | 7 | ns | | ^t PLZ | OL 01 OL | OE OF OE Y | | 4.1 | 6 | 1.2 | 7.5 | 1.2 | 7 | 115 | [†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. NOTE 2: Load circuits and waveforms are shown in Section 1. #### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright © 1998, Texas Instruments Incorporated REAL WORLD SIGNAL PROCESSING Advanced Search PRODUCTS ➤ APPLICATIONS ➤ SUPPORT ➤ TI&ME ➤ PRODUCT FOLDER | PRODUCT INFO: FEATURES | DESCRIPTION | DATASHEETS | PRICING/AVAILABILITY/PKG APPLICATION NOTES | RELATED DOCUMENTS PRODUCT SUPPORT: TRAINING #### SN74F241, Octal Buffers/Drivers With 3-State Outputs DEVICE STATUS: ACTIVE | PARAMETER NAME | SN54F241 | SN74F241 | | | |-------------------|------------|------------|--|--| | Voltage Nodes (V) | 5 | 5 | | | | Vcc range (V) | 4.5 to 5.5 | 4.5 to 5.5 | | | | Input Level | TTL | TTL | | | | Output Level | TTL | TTL | | | | Output Drive (mA) | | -15/64 | | | | tpd max (ns) | | 6.5 | | | | Static Current | | 75 | | | FEATURES ▲Back to Top - 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers - Package Options Include Plastic Small-Outline Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs DESCRIPTION Back to Top These octal buffers and line drivers are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. Taken together with the ´F240 and ´F244, these devices provide the choice of selected combinations of inverting and non inverting outputs, symmetrical \overline{OE} (active-low output-enable) inputs, and complementary OE and \overline{OE} inputs. The SN54F241 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74F241 is characterized for operation from 0°C to 70°C. TECHNICAL DOCUMENTS ▲Back to Top To view the following documents, Acrobat Reader 4.0 is required. To download a document to your hard drive, right-click on the link and choose 'Save'. DATASHEET <u>▲Back to Top</u> APPLICATION NOTES Back to Top View Application Notes for Digital Logic - Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) (SCBA012A Updated: 08/01/1997) - Designing With Logic (Rev. C) (SDYA009C Updated: 06/01/1997) - Evaluation of Nickel/Palladium/Gold-Finished Surface-Mount Integrated Circuits (SZZA026 Updated: 06/20/2001) - Input and Output Characteristics of Digital Integrated Circuits (SDYA010 Updated: 10/01/1996) - Timing Differences of 10-pF Versus 50pF Loading (SCEA004 Updated: 11/01/1996) #### RELATED DOCUMENTS ▲Back to Top View Related Documentation for <u>Digital Logic</u> - Logic Reference Guide (SCYB004, 1032 KB Updated: 10/23/2001) - Logic Selection Guide Second Half 2002 (Rev. R) (SDYU001R, 4274 KB Updated: 07/19/2002) - Military Semiconductors Selection Guide 2002 (Rev. B) (SGYC003B, 1648 KB Updated: 04/22/2002) PRICING/AVAILABILITY/PKG | DEVICE INFOR | RMATION | | | | | | | INVENTORY STAT
00 PM GMT, 26 S | | REPORTED DISTRIBUTOR INVENTORY
AS OF 3:00 PM GMT, 26 Sep 2002 | | | | |---------------------|---------------|----------------------|-----------|----------------------|------------------------------|--------------------|-------------|-----------------------------------|------------------|--|-----------------|----------|--| | ORDERABLE
DEVICE | <u>STATUS</u> | PACKAGE
TYPE PINS | TEMP (°C) | PRODUCT
CONTENT | BUDGETARY PRICING QTY \$US | STD
PACK
QTY | IN STOCK | IN PROGRESS
QTY DATE | <u>LEAD TIME</u> | DISTRIBUTOR
COMPANY REGION | <u>IN STOCK</u> | PURCHASE | | | SN74F241DW | ACTIVE | SOP (DW) 20 | 0 TO 70 | View Contents | 1KU 0.27 | 25 | <u>N/A*</u> | 819 30
Sep | 5 WKS | | | | | | | | | | | | | | 9614 04 Oct | | | | | | | | | | | | | | | >10k 11 Oct | | | | | | | SN74F241DWR | ACTIVE | SOP 20 | 0 TO 70 | <u>View Contents</u> | 1KU 0.27 | 2000 | <u>N/A*</u> | 9614 04 Oct | 5 WKS | | | | | | | | | | | | | | >10k 11 Oct | | | | | | | SN74F241N | ACTIVE | <u>PDIP</u> 20 | 0 TO 70 | View Contents | 1KU 0.27 | 20 | <u>N/A*</u> | 9614 07 Oct | 5 WKS | | | | | | | | | | | | | | >10k 14 Oct | | | | | | | | | | | | | | | 7800 21 Oct | | | | | | | SN74F241NSR | ACTIVE | SOP 20 | | View Contents | 1KU 0.78 | 2000 | <u>N/A*</u> | >10k 14 Oct | 5 WKS | | | | | Table Data Updated on: 9/26/2002