48 20E

47 1 1A1

46 1 1A2

45 GND

44**∏** 1A3

43 1A4

42 VCC

41 2A1

40 2A2

39 GND

38 II 2A3

37 2A4

36 3A1

35 3A2

34 GND

33 3A3

32 3A4

31 V_{CC}

30 4A1

29 4A2

28 | GND

27 4A3

26 4A4

25 T 3OE

DGG OR DGV PACKAGE

(TOP VIEW)

1OE

1Y1 2

1Y2 ∏ 3

GND 4

1Y3 🛮 5

1Y4 6

2Y2 9

GND 10

2Y4 12

3Y1 13

14

2Y3 11

3Y2

3Ү4 П 17

GND 15

3Y3 16

V_{CC} Ц 18

4Y1 **1**19

4Y2 20

GND 21

4Y3 22

4Y4 **∏** 23

4OE **∏** 24

Vcc Ц 2Y1 8

- **Member of the Texas Instruments** Widebus™ Family
- Optimized for 1.8-V Operation and is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- Ioff Supports Partial-Power-Down Mode Operation
- Sub 1-V Operable
- Max t_{pd} of 2 ns at 1.8 V
- Low Power Consumption, 20-µA Max I_{CC}
- ±8-mA Output Drive at 1.8 V
- Bus Hold on Data Inputs Eliminates the **Need for External Pullup/Pulldown** Resistors

description/ordering information

This 16-bit buffer/driver is operational at 0.8-V to 2.7-V V_{CC}, but is designed specifically for 1.65-V to 1.95-V V_{CC} operation.

The SN74AUCH16240 is designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. It provides inverting outputs and symmetrical active-low

output-enable (OE) inputs. To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

ORDERING INFORMATION

TA	PACKAG	eE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	TSSOP – DGG	Tape and reel	SN74AUCH16240DGGR	
–40°C to 85°C	TVSOP – DGV	Tape and reel	SN74AUCH16240DGVR	
	VFBGA – GQL	Tape and reel	SN74AUCH16240GQLR	

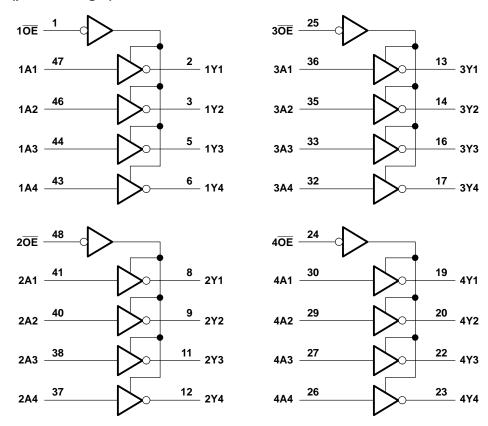
[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Widebus is a trademark of Texas Instruments

GQL PACKAGE (TOP VIEW)

	_	1	2	3	4	5	<u> </u>
Α	/	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ
В		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
С		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Е		\bigcirc	\bigcirc			\bigcirc	\bigcirc
F		\bigcirc	\bigcirc			\bigcirc	\bigcirc
G		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
н		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
J		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
K		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

terminal assignments


	1	2	3	4	5	6
Α	1 OE	NC	NC	NC	NC	2 OE
В	1Y2	1Y1	GND	GND	1A1	1A2
С	1Y4	1Y3	Vcc	Vcc	1A3	1A4
D	2Y2	2Y1	GND	GND	2A1	2A2
Е	2Y4	2Y3			2A3	2A4
F	3Y1	3Y2			3A2	3A1
G	3Y3	3Y4	GND	GND	3A4	3A3
н	4Y1	4Y2	Vcc	Vcc	4A2	4A1
J	4Y3	4Y4	GND	GND	4A4	4A3
K	4 OE	NC	NC	NC	NC	3 OE

NC - No internal connection

FUNCTION TABLE (each 4-bit buffer)

INP	UTS	OUTPUT
OE	Α	Y
L	Н	L
L	L	Н
Н	Х	Z

logic diagram (positive logic)

Pin numbers shown are for the DGG and DGV packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC}	
Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance or power-off	state, V _O
(see Note 1)	
Output voltage range, VO (see Note 1)	
Input clamp current, $I_{ K }(V_{ C } < 0)$	
Output clamp current, I _{OK} (V _O < 0)	
Continuous output current, IO	±20 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 2): DGG package	70°C/W
DGV package	58°C/W
GQL package	42°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT	
Vcc	Supply voltage		0.8	2.7	V	
		V _{CC} = 0.8 V	VCC			
V_{IH}	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	0.65 × V _{CC}		V	
		V _{CC} = 2.3 V to 2.7 V	1.7			
		V _{CC} = 0.8 V		0		
\vee_{IL}	Low-level input voltage	V _{CC} = 1.1 V to 1.95 V		0.35 × V _{CC}	V	
		V _{CC} = 2.3 V to 2.7 V		0.7		
٧ı	Input voltage	•	0	3.6	V	
٧o	Output voltage		0	VCC	V	
		V _{CC} = 0.8 V		-0.7		
		V _{CC} = 1.1 V		-3	mA	
ЮН	High-level output current	V _{CC} = 1.4 V		- 5		
		V _{CC} = 1.65 V		-8		
		V _{CC} = 2.3 V		-9		
		V _{CC} = 0.8 V		0.7		
		V _{CC} = 1.1 V		3		
lOL	Low-level output current	V _{CC} = 1.4 V		5	mA	
		V _{CC} = 1.65 V		8		
		V _{CC} = 2.3 V		9		
Δt/Δν	Input transition rise or fall rate	•		20	ns/V	
T _A	Operating free-air temperature		-40	85	°C	

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		VCC	MIN	TYP [†]	MAX	UNIT			
	I _{OH} = -100 μA		0.8 V to 2.7 V	V _{CC} -0.	1					
	$I_{OH} = -0.7 \text{ mA}$		0.8 V		0.55					
Vou	$I_{OH} = -3 \text{ mA}$		1.1 V	0.8			V			
VOH	I _{OH} = -5 mA		1.4 V	1			V			
	$I_{OH} = -8 \text{ mA}$		1.65 V	1.2						
	$I_{OH} = -9 \text{ mA}$		2.3 V	1.8						
	I _{OL} = 100 μA		0.8 V to 2.7 V			0.2				
	I _{OL} = 0.7 mA		0.8 V		0.25					
V	I _{OL} = 3 mA		1.1 V			0.3	V			
VOL	I _{OL} = 5 mA		1.4 V			0.4	V			
	I _{OL} = 8 mA		1.65 V			0.45				
	I _{OL} = 9 mA		2.3 V	0.6						
I _I A or OE inputs	V _I = V _{CC} or GND		0 to 2.7 V			±5	μΑ			
	V _I = 0.35 V		1.1 V	10						
†	V _I = 0.47 V		1.4 V	15						
I _{BHL} ‡	V _I = 0.57 V		1.65 V	20			μΑ			
	V _I = 0.7 V		2.3 V	40			<u> </u>			
	V _I = 0.8 V		1.1 V	-10						
I _{BHH} §	V _I = 0.9 V		1.4 V	-15			μΑ			
I IBHH	V _I = 1.07 V		1.65 V	-20						
	V _I = 1.7 V		2.3 V	-40						
			1.3 V	75						
I _{BHLO} ¶	V 04.74		1.6 V	125			1 , 1			
I IBHLO"	VI = 0 to VCC		1.95 V	175			μΑ			
			2.7 V	275						
			1.3 V	-75						
#	$V_I = 0$ to V_{CC}		1.6 V	-125			^			
^I BHHO [#]	v = 0 to vCC		1.95 V	-175			μΑ			
			2.7 V	-275						
loff	V_I or $V_O = 2.7 V$		0			±10	μΑ			
loz	$V_O = V_{CC}$ or GND		2.7 V			±10	μΑ			
Icc	$V_I = V_{CC}$ or GND,	= 0	0.8 V to 2.7 V			20	μΑ			
Ci	V _I = V _{CC} or GND		2.5 V				pF			
Co	V _O = V _{CC} or GND		2.5 V				pF			

[†] All typical values are at $T_A = 25$ °C.

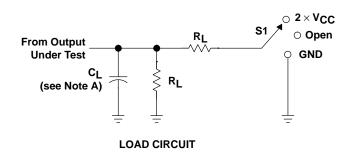
[‡] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.

[§] The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min.

[¶] An external driver must source at least I_{BHLO} to switch this node from low to high.

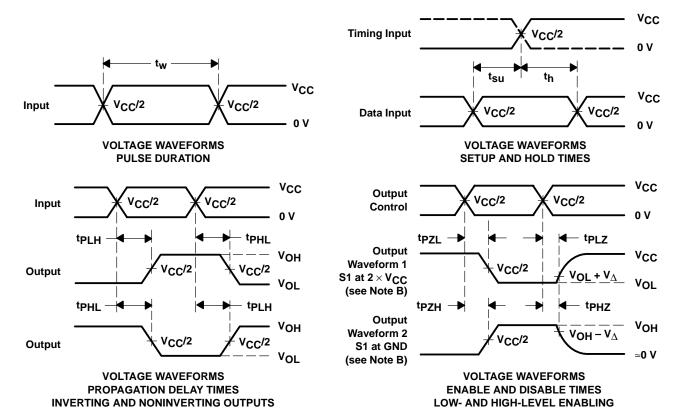
[#] An external driver must sink at least IBHHO to switch this node from high to low.

PRODUCT PREVIEW


switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 0.8 V	V _{CC} = 1.2 V ± 0.1 V	V _{CC} = 1.5 V ± 0.1 V	V _{CC} = 1.8 V ± 0.15 V	V _{CC} = 2.5 V ± 0.2 V	UNIT
	(1141 01)	(0011 01)	TYP	MIN MAX	MIN MAX	MIN TYP MAX	MIN MAX	
^t pd	А	Y						ns
t _{en}	ŌĒ	Y						ns
^t dis	ŌĒ	Y						ns

operating characteristics, $T_A = 25^{\circ}C$


	PARAMETE	В	TEST		V _{CC} = 1.2 V	V _{CC} = 1.5 V	V _{CC} = 1.8 V	V _{CC} = 2.5 V	UNIT
	FARAMETE	N.	CONDITIONS	TYP	TYP	TYP	TYP	TYP	ONII
	Power	Outputs enabled	f 40 MHz						, F
Cpc	dissipation capacitance	Outputs disabled	f = 10 MHz						pF

PARAMETER MEASUREMENT INFORMATION

TEST	S1
^t PLH ^{/t} PHL	Open
^t PLZ ^{/t} PZL	2×V _{CC}
^t PHZ ^{/t} PZH	GND

VCC	CL	RL	$v_{\scriptscriptstyle\Delta}$
0.8 V	15 pF	2 k Ω	0.1 V
1.2 V \pm 0.1 V	15 pF	2 k Ω	0.1 V
1.5 V \pm 0.1 V	15 pF	2 k Ω	0.1 V
1.8 V \pm 0.15 V	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	30 pF	500 Ω	0.15 V

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, slew rate \geq 1 V/ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.
 - H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

