SCES332 – APRIL 2000

| <ul> <li>State-of-the-Art Advanced BiCMOS<br/>Technology (ABT) <i>Widebus</i><sup>™</sup> Design for<br/>2.5-V and 3.3-V Operation and Low</li> </ul> | SN54ALVTH16260<br>SN74ALVTH16260 DGG, J<br>(TOP VIE | DGV, OR DL PACKAGE   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------|
| Static-Power Dissipation                                                                                                                              |                                                     | 56 OE2B              |
| <ul> <li>Support Mixed-Mode Signal Operation (5-V</li> </ul>                                                                                          |                                                     | 55 LEA2B             |
| Input and Output Voltages With 2.3-V to                                                                                                               |                                                     | 54 2B4               |
| 3.6-V V <sub>CC</sub> )                                                                                                                               |                                                     | 53 GND               |
| <ul> <li>Typical V<sub>OLP</sub> (Output Ground Bounce)</li> </ul>                                                                                    |                                                     | 52 2B5               |
| <0.8 V at V <sub>CC</sub> = 3.3 V, T <sub>A</sub> = 25°C                                                                                              |                                                     | 51 2B6               |
|                                                                                                                                                       |                                                     | 50 V <sub>CC</sub>   |
| <ul> <li>High-Drive (-24 mA/24 mA at 2.5-V and<br/>22/24 mA at 2.2 V/V</li> </ul>                                                                     |                                                     | 49 2B7               |
| –32/64mA at 3.3-V V <sub>CC</sub> )                                                                                                                   |                                                     | 48 2B8               |
| <ul> <li>I<sub>off</sub> and Power-Up 3-State Support Hot</li> </ul>                                                                                  |                                                     | 47 2B9               |
| Insertion                                                                                                                                             |                                                     | 46 GND               |
| <ul> <li>Use Bus Hold on Data Inputs in Place of</li> </ul>                                                                                           |                                                     | 45 2B10              |
| External Pullup/Pulldown Resistors to                                                                                                                 |                                                     | 44 2B11              |
| Prevent the Bus From Floating                                                                                                                         |                                                     | 43 2B12              |
| Auto3-State Eliminates Bus Current                                                                                                                    |                                                     | 42 ] 1B12            |
| Loading When Output Exceeds V <sub>CC</sub> + 0.5 V                                                                                                   |                                                     | 41 0 1B11            |
| Flow-Through Architecture Facilitates                                                                                                                 |                                                     | 40 1 1B10            |
| Printed Circuit Board Layout                                                                                                                          |                                                     |                      |
| <ul> <li>Distributed V<sub>CC</sub> and GND Pins Minimize</li> </ul>                                                                                  |                                                     | 38 <b>1</b> 1B9      |
| High-Speed Switching Noise                                                                                                                            |                                                     | 37 <b>1</b> 1B8      |
| <ul> <li>Package Options Include Plastic 300-mil</li> </ul>                                                                                           | A12 21                                              | 36 <b>[</b> ] 1B7    |
| Shrink Small-Outline (DL), Thin Shrink                                                                                                                | V <sub>CC</sub> 22                                  | 35 🛛 V <sub>CC</sub> |
| Small-Outline (DGG), Thin Very                                                                                                                        | <b>22</b>                                           | 34 <b>[</b> 1B6      |
| Small-Outline (DGV) Packages, and 380-mil                                                                                                             | 1B2 🛛 24                                            | 33 🛛 1B5             |
| Fine-Pitch Ceramic Flat (WD) Package                                                                                                                  | GND 25                                              | 32 GND               |
|                                                                                                                                                       | 1B3 🛛 26                                            | 31 🛿 1B4             |
| NOTE: For tape and reel order entry:<br>The DGGR package is abbreviated to GR, and                                                                    | LE2B [] 27                                          | 30 LEA1B             |
| the DGVR package is abbreviated to VR.                                                                                                                | SEL 🛛 28                                            | 29 OE1B              |

## description

The 'ALVTH16260 devices are 12-bit to 24-bit multiplexed D-type latches designed for 2.5-V or 3.3-V  $V_{CC}$  operation, but with the capability to provide a TTL interface to a 5-V system environment.

Three 12-bit I/O ports (A1–A12, 1B1–1B12, and 2B1–2B12) are available for address and/or data transfer. The output-enable ( $\overline{OE1B}$ ,  $\overline{OE2B}$ , and  $\overline{OEA}$ ) inputs control the bus transceiver functions. The  $\overline{OE1B}$  and  $\overline{OE2B}$  control signals also allow bank control in the A-to-B direction.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.



**PRODUCT PREVIEW** 

### description (continued)

The 'ALVTH16260 devices are used in applications where two separate data paths must be multiplexed onto, or demultiplexed from, a single data path. Typical applications include multiplexing and/or demultiplexing address and data information in microprocessor or bus-interface applications. This device also is useful in memory-interleaving applications.

Address and/or data information can be stored using the internal storage latches. The latch-enable (LE1B, LE2B, LEA1B, and LEA2B) inputs control data storage. When the latch-enable input is high, the latch is transparent. When the latch-enable input goes low, the data present at the inputs is latched and remains latched until the latch-enable input is returned high.

These devices are fully specified for hot-insertion applications using  $I_{off}$  and power-up 3-state. The  $I_{off}$  circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

When  $V_{CC}$  is between 0 and 1.2 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V,  $\overline{OE}$  should be tied to  $V_{CC}$  through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

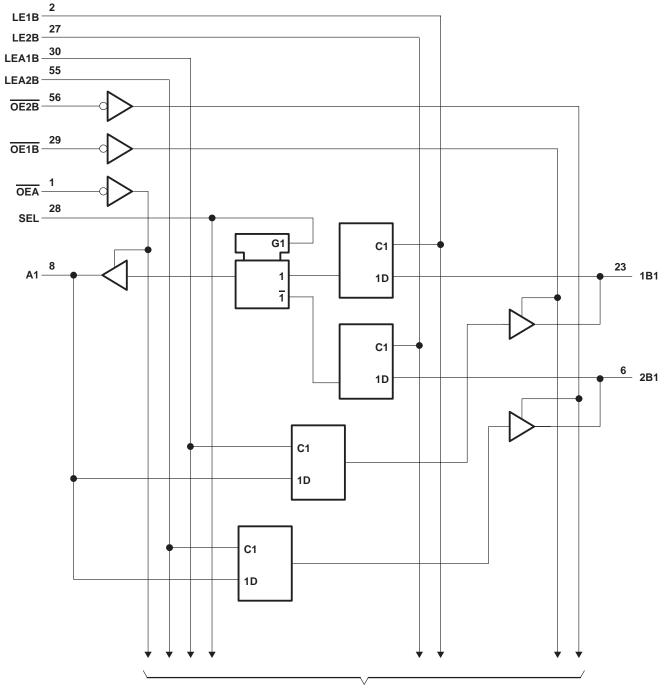
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN54ALVTH16260 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALVTH16260 is characterized for operation from -40°C to 85°C.

# **Function Tables**

B TO A ( $\overline{OEB} = H$ )

|    |    |     |      | ,    |     |                |
|----|----|-----|------|------|-----|----------------|
|    |    | INP | UTS  |      |     | OUTPUT         |
| 1B | 2B | SEL | LE1B | LE2B | OEA | Α              |
| н  | Х  | Н   | Н    | Х    | L   | Н              |
| L  | Х  | Н   | Н    | Х    | L   | L              |
| X  | Х  | Н   | L    | Х    | L   | A <sub>0</sub> |
| X  | Н  | L   | Х    | Н    | L   | Н              |
| X  | L  | L   | Х    | Н    | L   | L              |
| Х  | Х  | L   | Х    | L    | L   | A <sub>0</sub> |
| Х  | Х  | Х   | Х    | Х    | Н   | Z              |


# A TO B ( $\overline{OEA} = H$ )

|   |       | INPUTS |      |      | OUTI            | PUTS            |
|---|-------|--------|------|------|-----------------|-----------------|
| Α | LEA1B | LEA2B  | OE1B | OE2B | 1B              | 2B              |
| н | Н     | Н      | L    | L    | Н               | Н               |
| L | Н     | Н      | L    | L    | L               | L               |
| н | Н     | L      | L    | L    | н               | 2B0             |
| L | Н     | L      | L    | L    | L               | 2B0             |
| н | L     | Н      | L    | L    | 1B <sub>0</sub> | Н               |
| L | L     | Н      | L    | L    | 1B <sub>0</sub> | L               |
| X | L     | L      | L    | L    | 1B <sub>0</sub> | 2B <sub>0</sub> |
| X | Х     | Х      | Н    | н    | Z               | Z               |
| X | Х     | Х      | L    | н    | Active          | Z               |
| X | Х     | Х      | Н    | L    | Z               | Active          |
| Х | Х     | Х      | L    | L    | Active          | Active          |



SCES332 - APRIL 2000

# logic diagram (positive logic)



To 11 Other Channels



SCES332 - APRIL 2000

# absolute maximum ratings over operating free-air temperature range (unless otherwise noted)<sup>†</sup>

| Supply voltage range, V <sub>CC</sub><br>Input voltage range, V <sub>I</sub> (see Note 1)<br>Voltage range applied to any output in the high-impedance |                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| or power-off state, V <sub>O</sub> (see Note 1)                                                                                                        | $\ldots$ $-0.5$ V to 7 V |
| Voltage range applied to any output in the high state, V <sub>O</sub> (see Note 1)                                                                     |                          |
| Output current in the low state, I <sub>O</sub> : SN54ALVTH16260                                                                                       | 96 mA                    |
| SN74ALVTH16260                                                                                                                                         | 128 mA                   |
| Output current in the high state, I <sub>O</sub> : SN54ALVTH16260                                                                                      |                          |
| SN74ALVTH16260                                                                                                                                         |                          |
| Continuous current through V <sub>CC</sub> or GND                                                                                                      | ±100 mA                  |
| Input clamp current, $I_{IK}(V_I < 0)$                                                                                                                 |                          |
| Output clamp current, $I_{OK}$ (V <sub>O</sub> < 0)                                                                                                    |                          |
| Package thermal impedance, $\theta_{JA}$ (see Note 2): DGG package                                                                                     |                          |
| DGV package                                                                                                                                            |                          |
| DL package                                                                                                                                             |                          |
| Storage temperature range, T <sub>stg</sub>                                                                                                            |                          |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51.

## recommended operating conditions, V<sub>CC</sub> = 2.5 V $\pm$ 0.2 V (see Note 3)

|                          |                                                                    |                 | SN54 | ALVTH162 | :60 | SN74 | ALVTH162 | 60  | UNIT |
|--------------------------|--------------------------------------------------------------------|-----------------|------|----------|-----|------|----------|-----|------|
|                          |                                                                    |                 | MIN  | TYP      | MAX | MIN  | TYP      | MAX | UNIT |
| V <sub>CC</sub>          | Supply voltage                                                     |                 | 2.3  |          | 2.7 | 2.3  |          | 2.7 | V    |
| VIH                      | High-level input voltage                                           |                 | 1.7  |          |     | 1.7  |          |     | V    |
| VIL                      | Low-level input voltage                                            |                 |      |          | 0.7 |      |          | 0.7 | V    |
| VI                       | Input voltage                                                      |                 | 0    | VCC      | 5.5 | 0    | VCC      | 5.5 | V    |
| ЮН                       | High-level output current                                          |                 |      |          | -6  |      |          | -8  | mA   |
|                          | Low-level output current                                           |                 |      |          | 6   |      |          | 8   |      |
| IOL                      | Low-level output current; current cycle $\leq$ 50%; f $\geq$ 1 kHz | t duty          |      |          | 18  |      |          | 24  | mA   |
| $\Delta t/\Delta v$      | Input transition rise or fall rate                                 | Outputs enabled |      |          | 10  |      |          | 10  | ns/V |
| $\Delta t/\Delta V_{CC}$ | Power-up ramp rate                                                 |                 | 200  |          |     | 200  |          |     | μs/V |
| ТА                       | Operating free-air temperature                                     |                 | -55  |          | 125 | -40  |          | 85  | °C   |

NOTE 3: All unused control inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.



# recommended operating conditions, V\_CC = 3.3 V $\pm$ 0.3 V (see Note 3)

|                            |                                                                    |                 | SN54 | ALVTH162 | 60  | SN74 | ALVTH162 | 60  | UNIT |
|----------------------------|--------------------------------------------------------------------|-----------------|------|----------|-----|------|----------|-----|------|
|                            |                                                                    |                 | MIN  | ТҮР      | MAX | MIN  | TYP      | MAX | UNIT |
| VCC                        | Supply voltage                                                     |                 | 3    |          | 3.6 | 3    |          | 3.6 | V    |
| VIH                        | High-level input voltage                                           |                 | 2    |          |     | 2    |          |     | V    |
| VIL                        | Low-level input voltage                                            |                 |      |          | 0.8 |      |          | 0.8 | V    |
| VI                         | Input voltage                                                      |                 | 0    | Vcc      | 5.5 | 0    | VCC      | 5.5 | V    |
| IOH                        | High-level output current                                          |                 |      |          | -24 |      |          | -32 | mA   |
|                            | Low-level output current                                           |                 |      |          | 24  |      |          | 32  |      |
| IOL                        | Low-level output current; current cycle $\leq$ 50%; f $\geq$ 1 kHz | t duty          |      |          | 48  |      |          | 64  | mA   |
| $\Delta t/\Delta v$        | Input transition rise or fall rate                                 | Outputs enabled |      |          | 10  |      |          | 10  | ns/V |
| $\Delta t / \Delta V_{CC}$ | Power-up ramp rate                                                 |                 | 200  |          |     | 200  |          |     | μs/V |
| Т <sub>А</sub>             | Operating free-air temperature                                     |                 | -55  |          | 125 | -40  |          | 85  | °C   |

NOTE 3: All unused control inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.



#### SCES332 - APRIL 2000

#### electrical characteristics over recommended operating free-air temperature range, $V_{CC}$ = 2.5 V ± 0.2 V (unless otherwise noted)

| DA                 | DAMETED            | TEAT                                                                                              |                                      | SN54                | ALVTH1 | 6260 | SN74               | ALVTH1 | 6260 | UNIT |  |
|--------------------|--------------------|---------------------------------------------------------------------------------------------------|--------------------------------------|---------------------|--------|------|--------------------|--------|------|------|--|
| PA                 | RAMETER            | TEST CO                                                                                           | ONDITIONS                            | MIN                 | түр†   | MAX  | MIN                | түр†   | MAX  | UNIT |  |
| VIK                |                    | V <sub>CC</sub> = 2.3 V,                                                                          | lj = -18 mA                          |                     |        | -1.2 |                    |        | -1.2 | V    |  |
|                    |                    | V <sub>CC</sub> = 2.3 V to 2.7 V,                                                                 | I <sub>OH</sub> = –100 μA            | V <sub>CC</sub> -0. | 2      |      | V <sub>CC</sub> -0 | .2     |      |      |  |
| VOH                |                    | V <sub>CC</sub> = 2.3 V                                                                           | I <sub>OH</sub> = -6 mA              | 1.8                 |        |      |                    |        |      | V    |  |
|                    |                    | VCC = 2.3 V                                                                                       | I <sub>OH</sub> = -8 mA              |                     |        |      | 1.8                |        |      |      |  |
|                    |                    | $V_{CC}$ = 2.3 V to 2.7 V,                                                                        | I <sub>OL</sub> = 100 μA             |                     |        | 0.2  |                    |        | 0.2  |      |  |
|                    |                    |                                                                                                   | I <sub>OL</sub> = 6 mA               |                     |        | 0.4  |                    |        |      | 1    |  |
| VOL                |                    | V <sub>CC</sub> = 2.3 V                                                                           | I <sub>OL</sub> = 8 mA               |                     |        |      |                    |        | 0.4  | V    |  |
|                    |                    | V()() = 2.3 V                                                                                     | I <sub>OL</sub> = 18 mA              |                     |        | 0.5  |                    |        |      |      |  |
|                    |                    |                                                                                                   | I <sub>OL</sub> = 24 mA              |                     |        |      |                    |        | 0.5  |      |  |
|                    | Control inputs     | V <sub>CC</sub> = 2.7 V,                                                                          | V <sub>I</sub> = GND                 |                     |        | ±1   |                    |        | ±1   |      |  |
| łį                 | Control inputs     | $V_{CC} = 0 \text{ or } 2.7 \text{ V},$                                                           | V <sub>I</sub> = 2.7 V               |                     |        | 1    |                    |        | 1    | μA   |  |
| μ                  | A or B ports       | V <sub>CC</sub> = 2.7 V                                                                           | $V_I = V_{CC}$                       |                     |        | 10   |                    |        | 10   |      |  |
|                    | A of B ports       | VCC = 2.7 V                                                                                       | V <sub>I</sub> = 0                   |                     |        | -5   |                    |        | -5   |      |  |
| loff               |                    | V <sub>CC</sub> = 0,                                                                              | $V_{I}$ or $V_{O}$ = 0 to 4.5 V      |                     |        |      |                    |        | ±100 | μΑ   |  |
| I <sub>BHL</sub> ‡ |                    | V <sub>CC</sub> = 2.3 V,                                                                          | V <sub>I</sub> = 0.7 V               |                     | 115    |      |                    | 115    |      | μA   |  |
| IBHH§              |                    | V <sub>CC</sub> = 2.3 V,                                                                          | VI = 1.7 V                           |                     | -10    |      |                    | -10    |      | μA   |  |
| <b>IBHLO</b>       | Π                  | V <sub>CC</sub> = 2.7 V,                                                                          | $V_I = 0$ to $V_{CC}$                | 300                 |        |      | 300                |        |      | μA   |  |
| Івнно              | #                  | V <sub>CC</sub> = 2.7 V,                                                                          | $V_I = 0$ to $V_{CC}$                | -300                |        |      | -300               |        |      | μA   |  |
| IEX                |                    | V <sub>CC</sub> = 2.3 V,                                                                          | V <sub>O</sub> = 5.5 V               |                     |        |      |                    |        | 125  | μA   |  |
| IOZ(PU             | J/PD) <sup>☆</sup> | $V_{CC} \le 1.2 \text{ V}, V_O = 0.5 \text{ V}$<br>V <sub>I</sub> = GND or V <sub>CC</sub> , OE = | / to V <sub>CC</sub> ,<br>don't care |                     |        | ±100 |                    |        | ±100 | μΑ   |  |
|                    |                    | V <sub>CC</sub> = 2.7 V,                                                                          | Outputs high                         |                     | 0.04   | 0.09 |                    | 0.04   | 0.09 |      |  |
| ICC                |                    | $I_{O} = 0,$                                                                                      | Outputs low                          |                     | 2.3    | 4.5  |                    | 2.3    | 4.5  | mA   |  |
|                    |                    | $V_{I} = V_{CC}$ or GND                                                                           | Outputs disabled                     |                     | 0.04   | 0.09 |                    | 0.04   | 0.09 |      |  |
| Ci                 |                    | V <sub>CC</sub> = 2.5 V,                                                                          | V <sub>I</sub> = 2.5 V or 0          |                     |        |      |                    |        |      | pF   |  |
| Cio                |                    | V <sub>CC</sub> = 2.5 V,                                                                          | V <sub>O</sub> = 2.5 V or 0          |                     |        |      |                    |        |      | pF   |  |

<sup>†</sup> All typical values are at  $V_{CC} = 2.5 \text{ V}$ ,  $T_A = 25^{\circ}C$ .

<sup>‡</sup> The bus-hold circuit can sink at least the minimum low sustaining current at V<sub>IL</sub> max. I<sub>BHL</sub> should be measured after lowering V<sub>IN</sub> to GND and then raising it to VIL max.

§ The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to VIH min.

 $\P$  An external driver must source at least  $I_{BHLO}$  to switch this node from low to high.

# An external driver must sink at least IBHHO to switch this node from high to low.

I Current into an output in the high state when  $V_O > V_{CC}$ 

\*High-impedance state during power up or power down



SCES332 - APRIL 2000

#### electrical characteristics over recommended operating free-air temperature range, $V_{CC}$ = 3.3 V ± 0.3 V (unless otherwise noted)

|                    | DAMETED            | TEOT                                                                                              |                                               | SN54                | ALVTH1           | 6260 | SN74                | ALVTH1           | 6260 | UNIT |
|--------------------|--------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------|------------------|------|---------------------|------------------|------|------|
| PA                 | RAMETER            | IEST                                                                                              | CONDITIONS                                    | MIN                 | TYP <sup>†</sup> | MAX  | MIN                 | TYP <sup>†</sup> | MAX  | UNII |
| VIK                |                    | V <sub>CC</sub> = 3 V,                                                                            | Ij = -18 mA                                   |                     |                  | -1.2 |                     |                  | -1.2 | V    |
|                    |                    | V <sub>CC</sub> = 3 V to 3.6 V,                                                                   | I <sub>OH</sub> = -100 μA                     | V <sub>CC</sub> –0. | 2                |      | V <sub>CC</sub> -0. | 2                |      |      |
| VOH                |                    | V <sub>CC</sub> = 3 V                                                                             | I <sub>OH</sub> = -24 mA                      | 2                   |                  |      |                     |                  |      | V    |
|                    |                    | $v_{CC} = 3 v$                                                                                    | I <sub>OH</sub> = -32 mA                      |                     |                  |      | 2                   |                  |      |      |
|                    |                    | $V_{CC} = 3 V \text{ to } 3.6 V,$                                                                 | I <sub>OL</sub> = 100 μA                      |                     |                  | 0.2  |                     |                  | 0.2  |      |
|                    |                    |                                                                                                   | I <sub>OL</sub> = 16 mA                       |                     |                  |      |                     |                  | 0.4  |      |
| V.e.               |                    |                                                                                                   | I <sub>OL</sub> = 24 mA                       |                     |                  | 0.5  |                     |                  |      | V    |
| VOL                |                    | $V_{CC} = 3 V$                                                                                    | I <sub>OL</sub> = 32 mA                       |                     |                  |      |                     |                  | 0.5  | v    |
|                    |                    | I <sub>OL</sub> = 48 mA                                                                           |                                               |                     | 0.55             |      |                     |                  |      |      |
|                    |                    |                                                                                                   | I <sub>OL</sub> = 64 mA                       |                     |                  |      |                     |                  | 0.55 |      |
|                    | Control inputs     | V <sub>CC</sub> = 3.6 V,                                                                          | $V_I = V_{CC}$ or GND                         |                     |                  | ±1   |                     |                  | ±1   |      |
|                    | Control inputs     | V <sub>CC</sub> = 0 or 3.6 V,                                                                     | V <sub>I</sub> = 5.5 V                        |                     |                  | 10   |                     |                  | 10   |      |
| lı                 |                    |                                                                                                   | VI = 5.5 V                                    |                     |                  | 20   |                     |                  | 20   | μΑ   |
|                    | A or B ports       | V <sub>CC</sub> = 3.6 V                                                                           | $A^{I} = A^{CC}$                              |                     |                  | 10   |                     |                  | 10   |      |
|                    |                    |                                                                                                   | $V_{I} = 0$                                   |                     |                  | -5   |                     |                  | -5   |      |
| loff               | -                  | $V_{CC} = 0,$                                                                                     | $V_{I}$ or $V_{O} = 0$ to 4.5 V               |                     |                  |      |                     |                  | ±100 | μA   |
| IBHL‡              |                    | V <sub>CC</sub> = 3 V,                                                                            | V <sub>I</sub> = 0.8 V                        | 75                  |                  |      | 75                  |                  |      | μA   |
| I <sub>BHH</sub> § |                    | V <sub>CC</sub> = 3 V,                                                                            | V <sub>I</sub> = 2 V                          | -75                 |                  |      | -75                 |                  |      | μA   |
| <b>IBHLO</b>       |                    | V <sub>CC</sub> = 3.6 V,                                                                          | $V_{I} = 0$ to $V_{CC}$                       | 500                 |                  |      | 500                 |                  |      | μA   |
| I <sub>ВННО</sub>  |                    | V <sub>CC</sub> = 3.6 V,                                                                          | $V_{I} = 0$ to $V_{CC}$                       | -500                |                  |      | -500                |                  |      | μA   |
| IEX                |                    | V <sub>CC</sub> = 3 V,                                                                            | V <sub>O</sub> = 5.5 V                        |                     |                  | 125  |                     |                  | 125  | μA   |
| IOZ(PL             | J/PD) <sup>☆</sup> | $V_{CC} \le 1.2 \text{ V}, V_O = \frac{0.5}{V_I}$<br>V <sub>I</sub> = GND or V <sub>CC</sub> , OE | V to V <sub>CC</sub> ,<br>= don't care        |                     |                  | ±100 |                     |                  | ±100 | μΑ   |
|                    |                    | V <sub>CC</sub> = 3.6 V,                                                                          | Outputs high                                  |                     | 0.07             | 0.09 |                     | 0.07             | 0.09 |      |
| ICC                |                    | $I_{O} = 0,$                                                                                      | Outputs low                                   |                     | 3.2              | 5    |                     | 3.2              | 5    | mA   |
|                    |                    | $V_{I} = V_{CC}$ or GND                                                                           | Outputs disabled                              |                     | 0.07             | 0.09 |                     | 0.07             | 0.09 |      |
| ∆ICC□              |                    | $V_{CC} = 3 V$ to 3.6 V, Or<br>Other inputs at $V_{CC}$ or                                        | ne input at V <sub>CC</sub> – 0.6 V,<br>• GND |                     |                  | 0.4  |                     |                  | 0.4  | mA   |
| Ci                 |                    | V <sub>CC</sub> = 3.3 V,                                                                          | VI = 3.3 V or 0                               |                     |                  |      |                     |                  |      | pF   |
| C <sub>io</sub>    |                    | V <sub>CC</sub> = 3.3 V,                                                                          | V <sub>O</sub> = 3.3 V or 0                   |                     |                  |      |                     |                  |      | pF   |

<sup>†</sup> All typical values are at V<sub>CC</sub> = 3.3 V, T<sub>A</sub> =  $25^{\circ}$ C.

<sup>‡</sup>The bus-hold circuit can sink at least the minimum low sustaining current at V<sub>II</sub> max. I<sub>BHI</sub> should be measured after lowering V<sub>IN</sub> to GND and then raising it to VIL max.

§ The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to VIH min.

 $\P$  An external driver must source at least  $I_{BHLO}$  to switch this node from low to high.

# An external driver must sink at least IBHHO to switch this node from high to low.

I Current into an output in the high state when  $V_O > V_{CC}$ 

\*High-impedance state during power up or power down

 $^{\Box}$  This is the increase in supply current for each input that is at the specified TTL voltage level rather than V<sub>CC</sub> or GND.



SCES332 - APRIL 2000

## timing requirements over recommended operating free-air temperature range, V<sub>CC</sub> = 2.5 V $\pm$ 0.2 V (unless otherwise noted) (see Figure 1)

|                 |                                                     | SN54ALVT | H16260 | SN74ALVT | UNIT |    |
|-----------------|-----------------------------------------------------|----------|--------|----------|------|----|
|                 |                                                     | MIN MAX  | MIN    | MAX      | UNIT |    |
| tw              | Pulse duration, LE1B, LE2B, LEA1B, or LEA2B high    |          |        |          |      | ns |
| t <sub>su</sub> | Setup time, data before LE1B, LE2B, LEA1B, or LEA2B |          |        |          |      | ns |
| t <sub>h</sub>  | Hold time, data after LE1B, LE2B, LEA1B, or LEA2B   |          |        |          |      | ns |

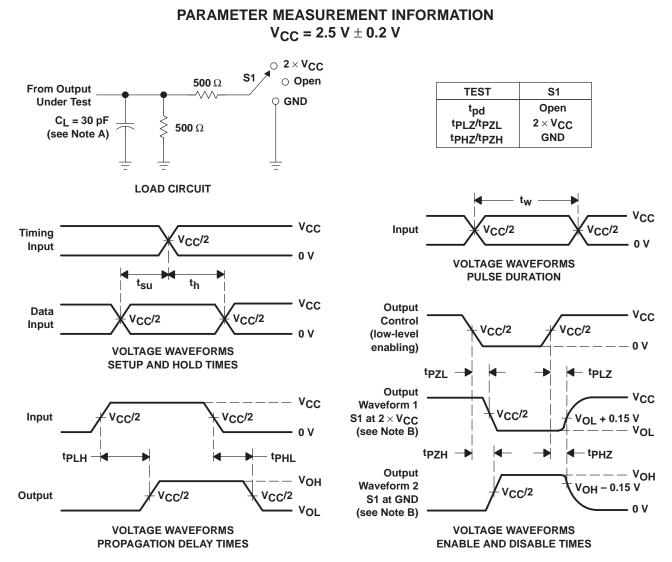
## timing requirements over recommended operating free-air temperature range, V<sub>CC</sub> = 3.3 V $\pm$ 0.3 V (unless otherwise noted) (see Figure 2)

|                 |                                                     | SN54ALVTH16260  |      | SN74ALVT | H16260 | UNIT |
|-----------------|-----------------------------------------------------|-----------------|------|----------|--------|------|
|                 |                                                     | MIN MAX MIN MAX | UNIT |          |        |      |
| tw              | Pulse duration, LE1B, LE2B, LEA1B, or LEA2B high    |                 |      |          |        | ns   |
| t <sub>su</sub> | Setup time, data before LE1B, LE2B, LEA1B, or LEA2B |                 |      |          |        | ns   |
| th              | Hold time, data after LE1B, LE2B, LEA1B, or LEA2B   |                 |      |          |        | ns   |

# switching characteristics over recommended operating free-air temperature range, C<sub>L</sub> = 30 pF, V<sub>CC</sub> = 2.5 V $\pm$ 0.2 V (unless otherwise noted) (see Figure 1)

| PARAMETER        | FROM    | то       | SN54ALVT | SN54ALVTH16260 |     |      | 6260 | UNIT |
|------------------|---------|----------|----------|----------------|-----|------|------|------|
| PARAMETER        | (INPUT) | (OUTPUT) | MIN      | MAX            | MIN | TYP† | MAX  | UNIT |
|                  | A or B  | B or A   |          |                |     |      |      |      |
| <sup>t</sup> pd  | LE      | A or B   |          |                |     |      |      | ns   |
|                  | SEL     | А        |          |                |     |      |      |      |
| ten              | OE      | A or B   |          |                |     |      |      | ns   |
| <sup>t</sup> dis | OE      | A or B   |          |                |     |      |      | ns   |

<sup>†</sup> All typical values are at  $V_{CC} = 2.5 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$ .

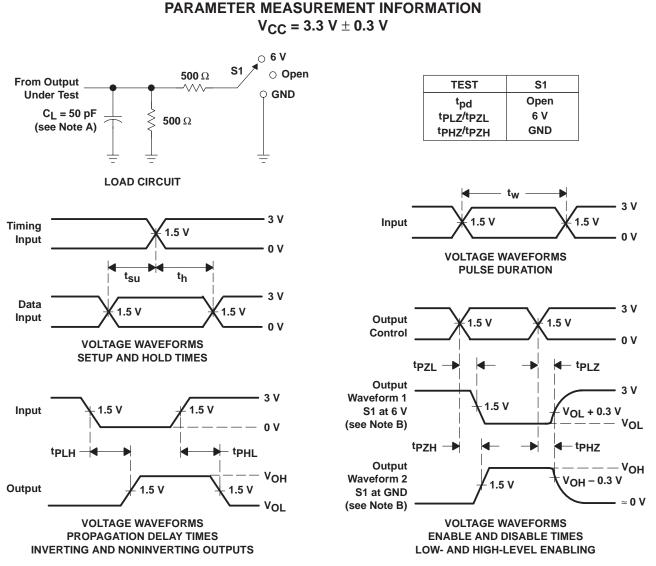

# switching characteristics over recommended operating free-air temperature range, C<sub>L</sub> = 50 pF, V<sub>CC</sub> = 3.3 V $\pm$ 0.3 V (unless otherwise noted) (see Figure 2)

| PARAMETER        | FROM    | то       | SN54ALVT | SN74 |     |      |     |      |
|------------------|---------|----------|----------|------|-----|------|-----|------|
| PARAMETER        | (INPUT) | (OUTPUT) | MIN      | MAX  | MIN | TYP‡ | MAX | UNIT |
|                  | A or B  | B or A   |          |      |     |      |     |      |
| <sup>t</sup> pd  | LE      | A or B   |          |      |     |      |     | ns   |
|                  | SEL     | А        |          |      |     |      |     |      |
| ten              | OE      | A or B   |          |      |     |      |     | ns   |
| <sup>t</sup> dis | OE      | A or B   |          |      |     |      |     | ns   |

<sup>‡</sup> All typical values are at V<sub>CC</sub> = 3.3 V, T<sub>A</sub> =  $25^{\circ}$ C.



SCES332 - APRIL 2000




NOTES: A. CI includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz, Z<sub>O</sub> = 50  $\Omega$ , t<sub>r</sub>  $\leq$  2 ns, t<sub>f</sub>  $\leq$  2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tp71 and tp7H are the same as ten.
- G. tpi H and tpHi are the same as tpd.

### Figure 1. Load Circuit and Voltage Waveforms





- NOTES: A. CL includes probe and jig capacitance.
  - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
     C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, t<sub>f</sub> ≤ 2.5 ns, t<sub>f</sub> ≤ 2.5 ns.
  - D. The outputs are measured one at a time with one transition per measurement.
  - E. tpLz and tpHz are the same as tdis.
  - F. tp<sub>7</sub> and tp<sub>7</sub> are the same as  $t_{en}$ .
  - G. tpLH and tpHL are the same as  $t_{pd}$ .

Figure 2. Load Circuit and Voltage Waveforms



#### **IMPORTANT NOTICE**

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated