

Low-Cost, Quad, SPST, CMOS Analog Switches

Features

- Low On-Resistance
- On-Resistance Matching Between Channels, 0.2Ω typ
- On-Resistance Flatness, $<2\Omega$ typ
- Low Off-Channel Leakage, <100pA @ +25°C
- TTL/CMOS Logic Compatible
- GND-to-V+ Analog Signal Dynamic Range
- Low Power Consumption (<12µW)
- Low Crosstalk: -86dB @ 1MHz
- Low Off-Isolation: -58dB @ 1 MHz
- Wide Bandwidth: > 100 MHz
- Small QSOP-16 Package Saves Board Area

Applications

- Instrumentation, ATE
- Sample-and-Holds
- **Audio Switching and Routing**
- Telecommunication Systems
- PBX, PABX
- **Battery-Powered Systems**

Description

The PS4066/PS4066A are improved SPST CMOS analog switches ideal for low-distortion audio switching. These high precision, medium voltage switches were designed to operate with single-supplies from +3V to 16V. They are fully specified with +12V, +5V, and +3V supplies. The PS4066/PS4066A has four normally open (NO) switches. Each switch conducts current equally well in either direction when on. In the off state each switch blocks voltages up to the power-supply rails.

With +12V power supply, the PS4066/PS4066A guarantee <45 Ω on-resistance. On-resistance matching between channels is within 2Ω (PS4066). On-resistance flatness is less than 4Ω (PS4066A) over the specified range. The PS4066A guarantees low leakage currents (<100pA @ 25°C, <6nA @ +85°C) and fast switching speeds (t_{ON} < 175ns). ESD sensitivity rating is >2,000V per MIL-STD 883, Method 3015.7

Both devices are available in PDIP-14, narrow-body SOIC-14, and QSOP-16 packages. Available temperature ranges are: commercial (0°C to 70°C), and industrial (-40°C to +85°C).

For operation below 5V, the PI5A101/PI5A391/PI5A392 are also recommended.

Functional Diagrams, Pin Configurations, and Truth Table

Logic	Switch
0	OFF ON

N.C. = No Internal Connection Switches shown for logic "0" input

Top View **QSOP**

Absolute Maximum Ratings

Thermal Information

Continuous Power Dissipation ($T_A = +70^{\circ}C$)
Plastic DIP (derate $10.5 \text{mW}/\text{°C}$ above $+70 \text{°C}$) 800mW
SO and QSOP (derate $8.7 \text{mW}/^{\circ}\text{C}$ above $+70^{\circ}\text{C})$ 650mW
Storage Temperature -65° C to $+150^{\circ}$ C
Lead Temperature (soldering, 10s) +300°C

Note

Signals on NC, NO, COM, or IN exceeding V+ or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +12V Supply

 $(V + = 12V \pm 10\%, GND = 0V, V_{INH} = 4V, V_{INL} = 0.8V)$

Parameter	Symbol	Conditions		Temp. (°C)	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units
Analog Switch								
Analog Signal Range ⁽³⁾	V _{ANALOG}			Full	0		V+	V
On Resistance	R _{ON}	$V+ = 12V, I_{COM} = 2mA,$		25		12	45	
	011	$V_{NO} = 10V$		Full			55	
On-Resistance Match	$\Delta R_{ m ON}$	$V+ = 12V, I_{COM} = 2mA$ $V_{NO} = 10V$	PS4066 PS4066A	25		0.5 0.5	4 2	Ω
Between Channels ⁽⁴⁾	ON	110		Full			6	
On-Resistance	R _{FLAT(ON)}	$V+ = 12V, I_{COM} = 2mA,$		25		2	4	
Flatness ⁽⁵⁾	TLAI(ON)	$V_{NO} = 10V, 5V, 1V$		Full			6	
NO or NC Off	I _{NO(OFF)}	$V+ = 12V, V_{COM} = 0V,$	PS4066 PS4066A	25	-1 -0.1		1 0.1	
Leakage Current ⁽⁶⁾ I _N	I _{NC(OFF)}	$V_{NO} = 10V$		Full	-6		6	
COM Off Leakage Current ⁽⁶⁾ ICOM(OFF)	I _{COM(OFF)}	$V + = 12V, V_{COM} = 0V,$	PS4066 PS4066A	25	-1 -0.1		1 0.1	пA
	COM(OII)	$V_{NO} = 10V$		Full	-6		6	
COM On Leakage Current ⁽⁶⁾ I _{COM(ON)}	I _{COM(ON)}	$V+ = 12V, V_{COM} = 10V,$	PS4066 PS4066A	25	-2 -0.2		2 0.2	
		$V_{NO} = 10V$		Full	-12		12	

Electrical Specifications - Single +12V Supply (continued)

 $(V + = 12V \pm 10\%, GND = 0V, V_{INH} = 4V, V_{INI} = 0.8V)$

Parameter	Symbol	Conditions	Temp (°C)	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units
Logic Input				•			
Input Current with Input Voltage High	I _{INH}	IN =5V, all others = 0.8V		-0.5	0.005	0.5	μΑ
Input Current with Input Voltage Low	I _{INL}	IN = 0.8V, all others =5V	Full	-0.5	0.005	0.5	•
Dynamic							
Turn-On Time	t		25		45	100	
Turr-On Time	t _{ON}	$V_{COM} = 10V$, Figure 2	Full			150	
Turn-Off Time	+		25		17	75	ns
Turn-On Time	t _{OFF}		Full			100	
On-Channel Bandwidth	BW	Signal = 0dbm Figure 4, 50Ω in and out	25		100		MHz
Charge Injection ⁽³⁾	Q	C_L =1nF, V_{CEN} = 0V, R_{CEN} = 0 Ω , Figure 3			2	10	рC
Off Isolation	OIRR	$R_L = 50\Omega$, $C_L = 5pF$, $f = 1$ MHz, Figure 4			-58		J.
Crosstalk ⁽⁸⁾	X _{TALK}	$R_L = 50\Omega$, $C_L = 5pF$, $f = 1$ MHz, Figure 5			-86		dB
NO Capacitance	C _(OFF)	f=1 MHz, Figure 6			9		
COM Off Capacitance		f=1 MHz, Figure 6			9		pF
COM On Capacitance	C _{COM(ON)}	f =1MHz, Figure 7			22		
Supply							
Positive Supply Current	I+	$V_{IN} = 0V$ or V+, all channels on or off	Full	-1	0.001	1	μΑ
Total Harmonic Distortion	THD		Full		0.03		%

Notes:

- 1. The algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design
- 4. $\Delta R_{ON} = \Delta R_{ON} \max \Delta R_{ON} \min$
- 5. Flatness is defined as the difference between the maximum and minimum value of on-resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 7. Off Isolation = $20\log_{10} [V_{COM} / (V_{NO} \text{ or } V_{NO})]$, $V_{COM} = 0$ utput, $V_{NC} / V_{NO} = \text{input to off switch}$
- 8. Between any two switches.

Electrical Specifications - Single +5V Supply (V+ = +5V $\pm 10\%$, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)

Parameter	Symbol	Conditions		Temp (°C)	M in ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units
Analog Switch							•	
Analog Signal Range(3)	V _{ANALOG}			Full	0		V+	V
O. P. : 4	D	$V+ = 4.5V, I_{COM} = -1mA,$ $V_{NO} = 3.5V$		25		22	75	
On-Resistance	$R_{ m ON}$			Full			100	
On-Resistance	AD	$V+ =5V, I_{COM} = -1mA,$ $V_{NO} = 3V$		25		0.3	4	
MatchBetween Channels ⁽⁴⁾	$\Delta R_{ m ON}$			Full			12	Ω
O. P	р	$V+ = 5V, I_{COM} = -1mA,$ $V_{NO} = 1V, 3V$		25		4	6	
On-Resistance Flatness ^(3,5)	$R_{FLAT(ON)}$			Full			8	
NO Off Leakage Current ⁽⁹⁾	I _{NO(OFF)}	$V + = 5.5V, V_{COM} = 0V,$	PS4066 PS4066A	25	-1 -0.1		1 0.1	
		$V_{NO} = 4.5V$		Full	-6		6	
COM Off Leakage Curren ⁽⁹⁾	I _{COM(OFF)}	$V+ = 5.5V, V_{COM} = 0V,$ $V_{NO} = 4.5V$	PS4066 PS4066A	25	-1 -0.1		1 0.1	nA
				Full	-6		6	
COM On Leakage Current ⁽⁶⁾	I _{COM(ON)}	$V + = 5.5V, V_{COM} = 5V$	PS4066 PS4066A	25	-2 -0.2		2 0.2	
		$V_{NO} = 4.5V$		Full	-12		12	
Dynamic								
Turn-On Time	t _{ON}	$V_{NO} = 3V$		25		65	125	
Turn-On Time				Full			175	
Turn-Off Time	t _{OFF}			25		30	75	ns
				Full			125	
On-Channel Bandwidth	BW	Signal = 0 dBm, 50Ω in and out Figure 4		25		100		MHz
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ V, Figure 3		25		1	10	pC
Supply								
Positive Supply Current	I+	$V+ = 5.5V$, $V_{IN} = 0V$ all channels on or		Full	-1		1	μA

Electrical Specifications - Single +3V Supply

 $(V+ = +2.7V \text{ to } 3.3V, \text{GND} = 0V, V_{\text{INH}} = 2.4V, V_{\text{INL}} = 0.8V)$

Parameter	Symbol	Conditions	Temp°C	Min.(1)	Typ(2)	Max.(1)	Units
Analog Switch							
Analog Signal Range(3)	V _{ANALOG}			0		V+	V
Channel On-Resistance	R _{ON}	$V+ = 3V, I_{COM} = -1mA,$ $V_{NO} = 1.5V$	25			170	Ω
			Full			225	
Dynamic							
Turn-On-Time ⁽³⁾	t _{ON}	$V+ = 3V, V_{NO} = 1.5V$	25		80	185	
			Full			230	
Turn-Off-Time ⁽³⁾	t _(OFF)	$V+ = 3V, V_{NO} = 1.5V$	25		40	150	ns
			Full			200	
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ V	25		2	10	pC
Supply							
Positive Supply Current	I+	$V+=3.3V, V_{IN}=0V \text{ or } V+,$ all channels on or off	Full	-1	0.001	1	μΑ

Notes:

1. The algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.

5

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design
- 4. $\Delta R_{ON} = \Delta R_{ON} \max \Delta R_{ON} \min$
- 5. Flatness is defined as the difference between the maximum and minimum value of on-resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 7. Off Isolation = $20\log_{10} [V_{COM} / (V_{NO} \text{ or } V_{NO})]$, $V_{COM} = 0$ utput, $V_{NC} / V_{NO} = \text{input to off switch}$
- 8. Between any two switches.

Typical Operating Characteristics (TA = +25°C, unless otherwise noted)

Typical Operating Characteristics ($TA = +25^{\circ}C$, unless otherwise noted)

Pin Description

Applications Information

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings may cause permanent damage to the devices. Always sequence V+ on first, and then the logic inputs. If power-supply sequencing is not possible, add a small signal diode or current limiting resistor in series with the supply pin for overvoltage protection (Figure 1). Adding a diode reduces the analog signal range, but low switch resistance and low leakage characteristics are unaffected.

Figure 1. Overvoltage protection is accomplished using an external blocking diode or a current limiting resistor.

Test Circuits/Timing Diagrams

Figure 2. Switching Times

Figure 3. Charge Injection

8

Test Circuits/Timing Diagrams (continued)

Figure 4. Off Isolation, BW

Figure 6. Channel-Off Capacitance

Ordering Information Part Number Temperature - Range **Package** PS4066CPD $0^{\circ}C$ to $+70^{\circ}C$ 14 Plastic DIP PS4066CSD $0^{\circ}C$ to $+70^{\circ}C$ 14 Narrow SO PS4066CEE $0^{\circ}C$ to $+70^{\circ}C$ 16 QSOP PS4066EPD $-40^{\circ}C$ to $+85^{\circ}C$ 14 Plastic DIP PS4066ESD -40° C to + 85° C 14 Narrow SO PS4066ACPD $0^{\circ}C$ to $+70^{\circ}C$ 14 Plastic DIP PS4066ACSD $0^{\circ}C$ to $+70^{\circ}C$ 14 Narrow SO PS4066ACEE $0^{\circ}C$ to $+70^{\circ}C$ 16 QSOP PS4066AEPD $-40^{\circ}C$ to $+85^{\circ}C$ 14 Plastic DIP PS4066AESD $-40^{\circ}C$ to $+85^{\circ}C$ 14 Narrow SO

 $-40^{\circ}C$ to $+85^{\circ}C$

16 QSOP

PS4066AEEE

Figure 5. Crosstalk

Figure 7. Channel-On Capacitance

Pericom Semiconductor Corporation

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com