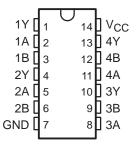
SCLS076B - DECEMBER 1982 - REVISED MAY 1997

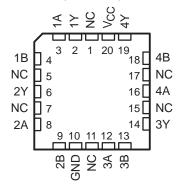
Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), Thin Shrink Small-Outline (PW), and Ceramic Flat (W) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

description

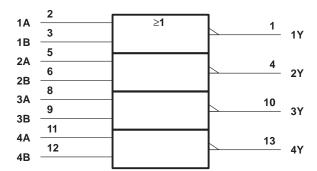
logic symbol†


These devices contain four independent 2-input NOR gates. They perform the Boolean function $Y = \overline{A + B}$ or $Y = \overline{A} \bullet \overline{B}$ in positive logic.

The SN54HC02 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC02 is characterized for operation from -40°C to 85°C.


FUNCTION TABLE (each gate)

INP	UTS	OUTPUT
Α	В	Y
Н	Х	L
Х	Н	L
L	L	н


SN54HC02...J OR W PACKAGE SN74HC02...D, DB, N, OR PW PACKAGE (TOP VIEW)

SN54HC02...FK PACKAGE (TOP VIEW)

NC - No internal connection

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, DB, J, N, PW, and W packages.

logic diagram (positive logic)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN54HC02, SN74HC02 QUADRUPLE 2-INPUT POSITIVE-NOR GATES

SCLS076B - DECEMBER 1982 - REVISED MAY 1997

absolute maximum ratings over operating free-air temperature range†

Supply voltage range, V _{CC}		–0.5 V to 7 V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$) (se	ee Note 1)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VCO	c) (see Note 1)	±20 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	- 	±25 mA
Continuous current through V _{CC} or GND		±50 mA
Package thermal impedance, θ _{JA} (see Note 2):	: D package	127°C/W
•	DB package	158°C/W
	N package	78°C/W
	PW package	170°C/W
Storage temperature range, T _{stg}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

recommended operating conditions

			S	SN54HC02			SN74HC02		
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		2	5	6	2	5	6	V
		V _{CC} = 2 V	1.5			1.5			
V _{IH} Hig	High-level input voltage	V _{CC} = 4.5 V	3.15			3.15			V
		VCC = 6 V	4.2			4.2			
VIL		V _{CC} = 2 V	0		0.5	0		0.5	
	Low-level input voltage	V _{CC} = 4.5 V	0		1.35	0		1.35	V
		VCC = 6 V	0		1.8	0		1.8	
VI	Input voltage		0		VCC	0		VCC	V
٧o	Output voltage		0		VCC	0		VCC	V
		V _{CC} = 2 V	0		1000	0		1000	
t _t	Input transition (rise and fall) time	V _{CC} = 4.5 V	0		500	0		500	ns
		V _{CC} = 6 V	0		400	0		400	
TA	Operating free-air temperature		-55		125	-40		85	°C

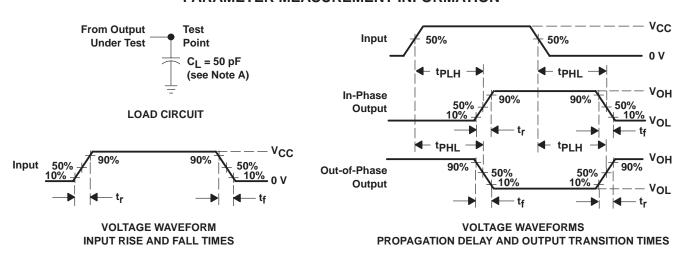
^{2.} The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

SCLS076B - DECEMBER 1982 - REVISED MAY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		vcc	Т	A = 25°C	;	SN54l	HC02	SN74F	IC02	UNIT			
PARAMETER	1251 CC	TEST CONDITIONS		MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNII			
			2 V	1.9	1.998		1.9		1.9					
		I _{OH} = -20 μA	4.5 V	4.4	4.499		4.4		4.4					
Voн	VI = VIH or VIL		6 V	5.9	5.999		5.9		5.9		V			
		$I_{OH} = -4 \text{ mA}$	4.5 V	3.98	4.3		3.7		3.84					
					$I_{OH} = -5.2 \text{ mA}$	6 V	5.48	5.8		5.2		5.34		
	V _{OL} V _I = V _{IH} or V _{IL}		2 V		0.002	0.1		0.1		0.1				
		I _{OL} = 20 μA	4.5 V		0.001	0.1		0.1		0.1				
VOL			6 V		0.001	0.1		0.1		0.1	V			
		I _{OL} = 4 mA	4.5 V		0.17	0.26		0.4		0.33				
		$I_{OL} = 5.2 \text{ mA}$	6 V		0.15	0.26		0.4		0.33				
lį	$V_I = V_{CC}$ or 0		6 V		±0.1	±100		±1000		±1000	nA			
Icc	$V_I = V_{CC}$ or 0,	I _O = 0	6 V			2		40		20	μΑ			
C _i		·	2 V to 6 V		3	10		10		10	pF			

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 1)


PARAMETER	AMETER FROM TO		Vaa	T,	ղ = 25°C	;	SN54H	HC02	SN74H	1C02	UNIT			
PARAMETER	(INPUT)	(OUTPUT)	(OUTPUT)	VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT		
		Y	2 V		45	90		135		115				
t _{pd}	t _{pd} A or B		Υ	Υ	Υ	4.5 V		9	18		27		23	ns
			6 V		8	15		23		20				
			2 V		38	75		110		95				
t _t		Υ	Υ	Υ	Υ	4.5 V		8	15		22		19	ns
			6 V		6	13	_	19		16				

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance per gate	No load	22	pF

SCLS076B - DECEMBER 1982 - REVISED MAY 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and test-fixture capacitance.

- B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f = 6 ns, t_f = 6 ns.
- C. The outputs are measured one at a time with one input transition per measurement.
- D. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated

₩ Texas Instruments	THE WORLD LEADER IN DSP AND ANALOG
Products	Development Tools Applications Go
Search GO	□ Advanced Search □ TI Home □ TI&ME □ Employment □ Tech Support □ Comments □ Site Map □ TI Global

PRODUCT FOLDER | PRODUCT INFO: FEATURES | DESCRIPTION | DATASHEETS |
PRICING/AVAILABILITY | APPLICATION NOTES |
RELATED DOCUMENTS

PRODUCT SUPPORT: TRAINING

SN54HC02, Quadruple 2-Input Positive-NOR Gates

DEVICE STATUS: ACTIVE

PARAMETER NAME	SN54HC02
Voltage Nodes (V)	6, 5, 2
Vcc range (V)	2.0 to 6.0
Input Level	CMOS
Output Level	CMOS
No. of Gates	4

FEATURES Back to Top

 Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), Thin Shrink Small-Outline (PW), and Ceramic Flat (W) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

DESCRIPTIONABack to Top

These devices contain four independent 2-input NOR gates. They perform the Boolean function $Y = \overline{A + B}$ or \Box in positive logic.

The SN54HC02 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC02 is characterized for operation from -40°C to 85°C.

TECHNICAL DOCUMENTS

■Back to Top

To view the following documents, <u>Acrobat Reader 3.x</u> is required.

To download a document to your hard drive, right-click on the link and choose 'Save'.

DATASHEET Back to Top

Full datasheet in Acrobat PDF: scls076b.pdf (76 KB) (Updated: 05/01/1997)

Full datasheet in Zipped PostScript: scls076b.psz (76 KB)

APPLICATION NOTES

Back to Top

View Application Reports for <u>Digital Logic</u>

- CMOS Power Consumption And CPD Calculation (SCAA035B Updated: 06/01/1997)
- Designing With Logic (SDYA009C Updated: 06/01/1997)
- HCMOS Design Considerations (SCLA007 Updated: 04/01/1996)
- Implications of Slow or Floating CMOS Inputs (SCBA004C Updated: 02/01/1998)
- Input and Output Characteristics of Digital Integrated Circuits (SDYA010 Updated: 10/01/1996)
- Live Insertion (SDYA012 Updated: 10/01/1996)
- <u>SN54/74HCT CMOS Logic Family Applications And Restrictions</u> (SCLA011 Updated: 05/01/1996)
- <u>Using High Speed CMOS And Advanced CMOS In Systems With Multiple Vcc</u> (SCLA008 Updated: 04/01/1996)

RELATED DOCUMENTS

Back to Top

- <u>Documentation Rules (SAP) And Ordering Information</u> (SZZU001B, 4 KB Updated: 05/06/1999)
- Logic Selection Guide Second Half 2000 (SDYU001N, 5035 KB Updated: 04/17/2000)
- MicroStar Junior BGA Design Summary (SCET004, 167 KB Updated: 07/28/2000)
- More Power In Less Space Technical Article (SCAU001A, 850 KB Updated: 03/01/1996)

PRICING/AVAILABILITY Back to Top

ORDERABLE DEVICE	<u>PACKAGE</u>	<u>PINS</u>	TEMP (°C)	<u>STATUS</u>	BUDGETARY PRICE US\$/UNIT OTY=1000+	PACK QTY	<u>DSCC</u> <u>NUMBER</u>	PRICING/AVAILABILITY
84041012A	<u>FK</u>	20	-55 TO 125	ACTIVE	6.71	1		Check stock or order
JM38510/65101B2A	<u>FK</u>	20	-55 TO 125	ACTIVE	7.65	1		Check stock or order
JM38510/65101BCA	<u>J</u>	14	-55 TO 125	ACTIVE	3.93	1		Check stock or order
JM38510/65101BDA	<u>W</u>	14	-55 TO 125	ACTIVE	11.23	1		Check stock or order
SN54HC02J	Ţ	14	-55 TO 125	ACTIVE	0.87	1		Check stock or order
SNJ54HC02FK	<u>FK</u>	20	-55 TO 125	ACTIVE	6.71	1	84041012A	Check stock or order

3 of 3

SNJ54HC02J	ī	14	-55 TO 125	ACTIVE	1.03	1		Check stock or order
SNJ54HC02W	<u>w</u>	14	-55 TO 125	ACTIVE	8.29	150	8404101DA	Check stock or order

Table Data Updated on: 11/10/2000

© Copyright 2000 Texas Instruments Incorporated. All rights reserved. <u>Trademarks | Privacy Policy | Important Notice</u>

* Texas Instruments	THE WORLD LEADER IN DSP AND ANALOG
Products Go	Development Tools Applications GO GO GO GO GO GO GO GO GO G
Search GO	☐ Advanced Search ☐ TI Home ☐ TI&ME ☐ Employment☐ Tech Support ☐ Comments ☐ Site Map ☐ TI Global

PRODUCT FOLDER | PRODUCT INFO: FEATURES | DESCRIPTION | DATASHEETS |
PRICING/AVAILABILITY | APPLICATION NOTES |
RELATED DOCUMENTS

PRODUCT SUPPORT: TRAINING

SN74HC02, Quadruple 2-Input Positive-NOR Gates

DEVICE STATUS: ACTIVE

PARAMETER NAME	SN74HC02			
Voltage Nodes (V)	6, 5, 2			
Vcc range (V)	2.0 to 6.0			
Input Level	CMOS			
Output Level	CMOS			
Output Drive (mA)	-4/4			
No. of Gates	4			
Static Current	0.02			
tpd(max) (ns)	20			

FEATURES Back to Top

 Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), Thin Shrink Small-Outline (PW), and Ceramic Flat (W) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

DESCRIPTION	<u> Back to Tor</u>

These devices contain four independent 2-input NOR gates. They perform the Boolean function $Y = \overline{A + B}$ or \Box in positive logic.

The SN54HC02 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC02 is characterized for operation from -40°C to 85°C.

TECHNICAL DOCUMENTS

▲Back to Top

To view the following documents, Acrobat Reader 3.x is required.

To download a document to your hard drive, right-click on the link and choose 'Save'.

DATASHEET

<u>Back to Top</u>

Full datasheet in Acrobat PDF: scls076b.pdf (76 KB) (Updated: 05/01/1997)

Full datasheet in Zipped PostScript: scls076b.psz (76 KB)

APPLICATION NOTES

Back to Top

View Application Reports for Digital Logic

- CMOS Power Consumption and CPD Calculation (SCAA035B Updated: 06/01/1997)
- Designing With Logic (SDYA009C Updated: 06/01/1997)
- HCMOS Design Considerations (SCLA007 Updated: 04/01/1996)
- Implications of Slow or Floating CMOS Inputs (SCBA004C Updated: 02/01/1998)
- Input and Output Characteristics of Digital Integrated Circuits (SDYA010 Updated: 10/01/1996)
- Live Insertion (SDYA012 Updated: 10/01/1996)
- <u>SN54/74HCT CMOS Logic Family Applications And Restrictions</u> (SCLA011 Updated: 05/01/1996)
- <u>Using High Speed CMOS and Advanced CMOS In Systems With Multiple Vcc</u> (SCLA008 Updated: 04/01/1996)

RELATED DOCUMENTS

■Back to Top

- <u>Documentation Rules (SAP) And Ordering Information</u> (SZZU001B, 4 KB Updated: 05/06/1999)
- Logic Selection Guide Second Half 2000 (SDYU001N, 5035 KB Updated: 04/17/2000)
- MicroStar Junior BGA Design Summary (SCET004, 167 KB Updated: 07/28/2000)
- More Power In Less Space Technical Article (SCAU001A, 850 KB Updated: 03/01/1996)

PRICING/AVAILABILITY

Back to Top

ORDERABLE DEVICE	PACKAGE	<u>PINS</u>	TEMP (°C)	<u>STATUS</u>	BUDGETARY PRICE US\$/UNIT QTY=1000+	PACK QTY	PRICING/AVAILABILITY
SN74HC02D	<u>D</u>	14	-40 TO 85	ACTIVE	0.25	50	Check stock or order
SN74HC02DBLE	<u>DB</u>	14	-40 TO 85	OBSOLETE			
SN74HC02DBR	<u>DB</u>	14	-40 TO 85	ACTIVE	0.25	2000	Check stock or order
SN74HC02DR	<u>D</u>	14	-40 TO 85	ACTIVE	0.28	2500	Check stock or order
SN74HC02N	<u>N</u>	14	-40 TO 85	ACTIVE	0.23	25	Check stock or order
SN74HC02N3	<u>N</u>	14	-40 TO 85	OBSOLETE			
SN74HC02NSR	<u>NS</u>	14	-40 TO	ACTIVE	0.33	2000	Check stock or order

3 of 3

			85				
SN74HC02PWLE	<u>PW</u>	14	-40 TO 85	OBSOLETE			
SN74HC02PWR	<u>PW</u>	14	-40 TO 85	ACTIVE	0.25	2000	Check stock or order

Table Data Updated on: 11/15/2000

© Copyright 2000 Texas Instruments Incorporated. All rights reserved. <u>Trademarks | Privacy Policy | Important Notice</u>