

CD74LCX16543

December 1997

Fast CMOS 16-Bit Latched Transceiver

Features

- Advanced 0.6 micron CMOS Technology
- · 5V Tolerant Inputs and Outputs
- · Supports Live Insertion of PCBs
- 2.0V to 3.6V V_{CC} Supply Range
- · Balanced 24mA Output Drive
- · Low Ground Bounce Outputs
- · ESD Protection Exceeds 2000V, HBM; 200V, MM
- · Functionally Compatible with FCT3, LVC, LVT, and 74 Series Logic Families

Pinout CD74LCX16543 (SSOP, TSSOP) TOP VIEW 1 OEBA 10EAB 1 ₁LEAB ₁LEBA 1CEBA 1 CEAB GND GND 1A0 5 ₁B₀ 1B1 6 1A1 v_{cc} 7 v_{cc} 1A2 8 1B2 48 1A3 9 1B3 47 1**A**4 10 1B4 GND 11 GND 12 1B5 44 13 1B6 1A7 1B7 15 2B0 2A0 41 2A1 ₂B₁ $_2B_2$ $_{2}A_{2}$ GND **GND** 18 38 19 2B3 37 ₂B₄ 2**A**4 $_2B_5$ $_{2}A_{5}$ 35 Vcc VCC 2Ac 2B6 2B7 2A7 **GND** GND 2CEBA 2CEAB ₂LEAB ₂LEBA ₂OEBA 2OEAB

Description

Harris CD74LCX16543 is produced in an advanced 0.6 micron CMOS technology, achieving industry leading speed grades.

The CD74LCX16543 are 16-bit latched transceivers organized with two sets of eight D-type latches with separate input and output controls for each set. For data flow from A to B, for example, the A-to-B Enable (xCEAB) input must be LOW in order to enter data from xAx or to take data from xBx, as indicated in the Truth Table. With xCEAB LOW, a LOW signal makes the A-to-B latches transparent; a subsequent LOW-to-HIGH transition of the xLEAB signal puts the A latches in the storage mode and their outputs no longer change the A inputs. With xCEAB and xOEAB both LOW, the 3-state B output buffers are active and reflect the data present at the output of the A latches. Control of data from B to A is similar, but uses the XCEAB, XLEAB, and XOEAB inputs.

The CD74LCX16543 can be driven from either 3.3V or 5.0V devices allowing this device to be used as a translator in a mixed 3.3/5.0V system.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. NO.
CD74LCX16543MT	-40 to 85	56 Ld TSSOP	M56.240-P
CD74LCX16543SM	-40 to 85	56 Ld SSOP	M56.300-P

NOTE: When ordering, use the entire part number. Add the suffix 96 to obtain the variant in the tape and reel.

Functional Block Diagram

TRUTH TABLE (NOTES 1, 3)

INPUTS		LATCH STATUS	OUTPUT BUFFERS	
XCEAB	XEAB	XOEAB	_X A _X TO _X B _X	х ^В х
Н	Х	Х	Storing	High Z
X	Н	Х	Storing	Х
X	X	Н	Х	High Z
L	L	L	Transparent	Current A Inputs
L	Н	L	Storing	Previous A Inputs (Note 2)

NOTES:

- 1. A-to-B data flow is shown. B-to-A flow control is the same except using $\chi\overline{CEBA},~\chi\overline{LEBA},$ and $\chi\overline{OEBA}.$
- 2. Before XLEAB LOW-to-HIGH Transition
- 3. H = High Voltage Level
 - L = Low Voltage Level
 - X = Don't Care or Irrelevant
 - Z = High Impedance

Pin Descriptions

PIN NAME	DESCRIPTION
XOEAB	A-to-B Output Enable Input (Active LOW)
_X OEBA	B-to-A Output Enable Input (Active LOW)
_X ŒAB	A-to-B Enable Input (Active LOW)
_X ŒBA	B-to-A Enable Input (Active LOW)
XLEAB	A-to-B Latch Enable Input (Active LOW)
XLEBA	B-to-A Latch Enable Input (Active LOW)
χΑχ	A-to-B Data Inputs or B-to-A Three-State Outputs
хВх	B-to-A Data Inputs or A -to-B Three-State Outputs
GND	Ground
v _{cc}	Power

CD74LCX16543

Absolute Maximum Ratings Thermal Information DC Input Voltage -0.5V to 7.0V θ_{JA} (°C/W) Thermal Resistance (Typical, Note 4) 85 70 **Operating Conditions** Temperature Range -40°C to 85°C Maximum Storage Temperature Range-65°C to 150°C Supply Voltage to Ground Potential Maximum Lead Temperature (Soldering 10s)......300°C Inputs and V_{CC} Only. -0.5V to 7.0V (Lead Tips Only) Supply Voltage, V_{CC} Data Retention 1.5V (Min), 3.6V (Max) Supply Voltage to Ground Potential Outputs and D/O Only.....-0.5V to 7.0V

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

4. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications

PARAMETER	SYMBOL	(NOT TEST COM	MIN	(NOTE 6) TYP	MAX	UNITS	
DC ELECTRICAL SPECIF	CATIONS	Over the Operating Range	, $T_A = -40^{\circ}C$ to 85°C, V_C	_{CC} = 2.7V to	3.6V		
Input HIGH Voltage	V _{IH}	Guaranteed Logic HIGH	2.0	-	-	٧	
Input LOW Voltage (Input and I/O Pins)	V _{IL}	Guaranteed Logic LOW Level		-	-	0.8	٧
Output HIGH Voltage	V _{ОН}	V _{CC} = 2.7V to 3.6V	I _{OH} = -0.1mA	V _{CC} - 0.2	-	-	٧
		V _{CC} = 2.7V	I _{OH} = -12mA	2.2	-	-	٧
		V _{CC} = 3.0V	I _{OH} = -18mA	2.4	-	-	٧
			I _{OH} = -24mA	2.2	-	-	٧
Output LOW Voltage	V _{OL}	$V_{CC} = 2.7V \text{ to } 3.6V$	I _{OL} = 0.1mA	-	-	0.2	٧
		V _{CC} = 2.7V	I _{OL} = 12mA	-	-	0.4	٧
		V _{CC} = 3V	I _{OL} = 16mA	-	-	0.4	٧
			I _{OL} = 24mA	-	-	0.55	٧
Clamp Diode Voltage	V _{IK}	V _{CC} = Min, I _{IN} = -18mA		-	-0.7	-1.2	٧
Input Current	lı	$V_{CC} = 2.7V \text{ to } 3.6V$ $0 \le V_{I} \le 5.5V$		-	-	±5	μΑ
High Impedance Output Current (Three-State)	loz	V_{CC} = 2.7V to 3.6V $0 \le V_O \le 5.5V$ $V_I = V_{IH}$ or V_{IL}		-	-	±5	μΑ
Power Down Disable	l _{OFF}	V _{CC} = 0V	V _{IN} or V _{OUT} ≤ 5.5V	-	-	10	μΑ
Quiescent Power Supply Current	lcc	V _{CC} = Max	V_{IN} = GND or V_{CC}	-	0.1	10	μΑ
Quiescent Power Supply Current TTL Inputs HIGH	∆l _{CC}	V _{CC} = Max	V _{IN} = V _{CC} - 0.6V (Note 7)	-	-	500	μΑ
CAPACITANCE							
Input Capacitance (Note 8)	C _{IN}	V _{CC} = Open, V _{IN} = 0V or V _{CC}		-	7	-	pF
Output Capacitance (Note 8)	C _{OUT}	$V_{CC} = 3.3V$, $V_{IN} = 0V$ or V_{CC}		-	8	-	рF
Power Dissipation Capacitance (Note 9)	C _{PD}	$V_{CC} = 3.3V$, $V_{IN} = 0V$ or V_{CC} , $f = 10MHz$		-	20	-	pF

Switching Specifications Over Operating Range

		TEST	V _{CC} = 3.3V ±0.3V		V _{CC} = 2.7V		
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	MIN	MAX	UNITS
Propagation Delay A _n to B _n or B _n to A _n	t _{PLH} , t _{PHL}	$C_L = 50pF$ $R_L = 500\Omega$	1.5	5.2	1.5	6.0	ns
Propagation Delay LEBA _n to A _n or LEAB _n to B _n	t _{PLH} , t _{PHL}		1.5	6.5	1.5	7.5	ns
Output Enable Time OEBA _n or OEAB _n to A _n or B _n CEBA _n or CEAB _n to A _n or B _n	^t PZH ^{, t} PZL		1.5	6.5	1.5	7.0	ns
Output Disable Time (Note 12) OEBA _n or OEAB _n to A _n or B _n CEBA _n or CEAB _n to A _n or B _n	^t PHZ ^{, t} PLZ		1.5	6.5	1.5	7.0	ns
Setup Time HIGH or LOW, Data to LExx _n	ts		2.5	-	2.5	-	ns
Hold Time HIGH or LOW, Data to LExx _n	tн		1.5	-	1.5	-	ns
Pulse Width, Latch Enable, LOW	tw		3.0	-	3.0	-	ns
Output to Output Skew (Note 13)	tsk(0)		-	1.0	-	-	ns

Dynamic Switching Characteristics $T_A = 25^{\circ}C$

PARAMETER	SYMBOL	(NOTE 14) TEST CONDITIONS	TYP	UNITS
Dynamic LOW Peak Voltage	V_{OLP}	$V_{CC} = 3.3V, C_L = 50pF, V_{IH} = 3.3V, V_{IL} = 0V$	0.8	٧
Dynamic LOW Valley Voltage	V _{OLV}	$V_{CC} = 3.3V, C_L = 50pF, V_{IH} = 3.3V, V_{IL} = 0V$	0.8	V

NOTES:

- 5. For conditions shown as Max or Min, use appropriate value specified under Electrical Specifications for the applicable device type.
- Typical values are at V_{CC} = 3.3V, 25°C ambient and maximum loading.
- 7. Per TTL driven input; all other inputs at V_{CC} or GND.
- 8. This parameter is determined by device characterization but is not production tested.
- 9. C_{PD} determines the no-load dynamic power consumption per latch. It is obtained by the following relationship: P_{D} (total power per latch) = V_{CC}^2 f_i (C_{PD} + C_L) where f_i = input frequency, C_L = output load capacitance, V_{CC} = supply range.
- 10. See test circuit and waveforms.
- 11. Minimum limits are guaranteed but not tested on Propagation Delays.
- 12. This parameter is guaranteed but not production tested.
- 13. Skew between any two outputs, of the same package, switching in the same direction. This parameter is guaranteed by design.
- 14. Measured with n-1 outputs switching from High-to-Low or Low-to-High. The remaining output is measured in the LOW state.