18-Bit Universal bus transceiver; 3-state

74ALVC16501

FEATURES

- Wide supply voltage range of 1.2 V to 3.6 V
- In accordance with JEDEC standard no. 8-1A.
- · CMOS low power consumption
- Direct interface with TTL levels
- Univeral bus transceiver with D-type latches and D-type Flip-flops capabable of operating in transparant, latched or clocked mode.
- All inputs have bushold circuitry
- Output drive capability 50Ω transmission lines @ 85 °C
- 3-state non-inverting outputs for bus oriented applications

DESCRIPTION

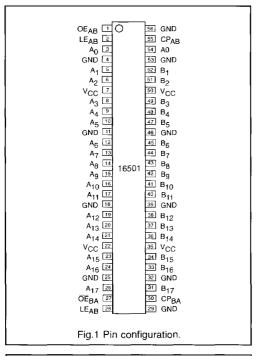
The 74ALVC16501 is an 18-bit universal bus transceiver. Data flow in each direction is controlled by output enable (OEAR, \overline{OE}_{BA}), latch-enable (LE_{AB}, LE_{BA}) and clock inputs (CPAB, CPBA). When LEAB is HIGH, the A-B dataflow is transparant. When LE_{AB} is LOW, and CPAB is held at LOW or HIGH, the A data is latched; on the LOW-to-HIGH transition of CPAR the A-data is stored in the latch/flip-flop. The outputs are active when OEAB is HIGH. When OEAR is LOW the B-outputs are in 3-state. Similarly, the LE_{BA} , \overline{OE}_{BA} and CP_{BA} control the B-to-A dataflow. Please note that both output enables are complementary: OEAB is active HIGH, \overline{OE}_{BA} is active LOW.

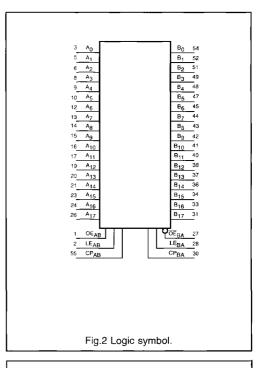
QUICK REFERENCE DATA

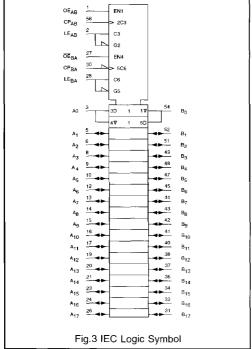
 $GND \approx 0 \text{ V}; T_{amb} = 25 \text{ °C}; t_r = t_f = 2.5 \text{ ns}$

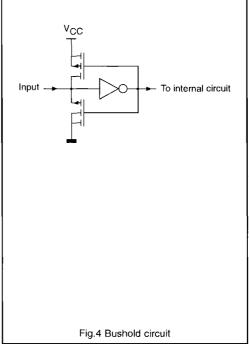
SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	propagation delay A _n to B _n ; LE _{AB} to A _n	$C_L = 50 \text{ pF}$ $V_{CC} = 3.3 \text{ V}$	3.0 3.2	ns
Cı	input capacitance		5.0	рF
C _{I/O}	input/output capacitance		10	рF
C _{PD}	power dissipation capacitance per latch	notes 1 and 2	22	рF

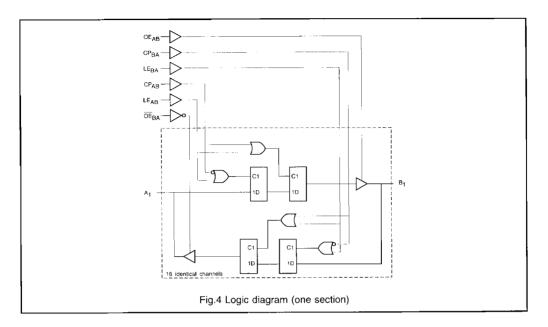
Notes to the quick reference data


- 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W): $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:
 - f_i = input frequency in MHz; C_L = output load capacity in pF; f_o = output frequency in MHz; V_{CC} = supply voltage in V;
 - $\Sigma (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs.}$
- 2. The condition is $V_1 = GND$ to V_{CC} .


ORDERING INFORMATION


TYPE NUMBER	PACKAGES							
I THE NUMBER	PINS	PACKAGE	MATERIAL	CODE				
74ALVC16501DL	56	SSOP56	plastic	SSOP56/SOT371				
74ALVC16501DGG	56	TSSOP56	plastic	TSSOP56/SOT364				


PINNING


PIN NO.	SYMBOL	NAME AND FUNCTION
1	ŌE _{AB}	output enable A-to-B
2	LE _{AB}	latch enable A-to-B
3, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26	A _o to A ₁₇	'A' data inputs/outputs
4, 11, 18, 25, 29, 32, 39, 46, 53, 56	GND	ground (0 V)
7, 22, 35, 50	N ^{CC}	positive supply voltage
27	OE _{BA}	output enable B-to-A
28	LE _{BA}	latch enable B-to-A
30	CP _{BA}	clock input B-to-A, HIGH-to-LOW
54, 52, 51, 49, 48, 47, 45, 44, 43, 42, 41, 40, 38, 37, 36, 34, 33, 31	B _o to B ₁₇	'B' data inputs/outputs
55	CP _{AB}	clock input A-to-B, HIGH-to-LOW

FUNCTION TABLE

	INP	UTS	OUTPUTS	STATUS	
OE _{AB} 1)	LE _{xx}	CP _{xx}	DATA	0011013	L
L	Х	Х	Х	Z	Disabled
H	Ħ	X X	I -J	ΗL	Transparant
L L	L	↑	h I	Z Z	Disabled + latch
H	L	<u></u>	h I	H	Latch + display
H H	L L	L H	X	NC NC1	Hold

XX = AB for A-to-B direction, BA for B-to-A direction

H = HIGH voltage levelL = LOW voltage level

h = High state must be present one setup time before the low-to-high transition of CP = Low state must be present one setup time before the low-to-high transition of CP

X = Don't care

1 = LOW-to-HIGH level transition

NC = No change

 $NC1 = No change provided that CP was LOW before LE_{xx} went low$

Z = High impedance "off" state

 $^{^{1)}}$ For the B-to-A direcion $\overline{\rm OE}_{\rm BA}$ is the inverse of ${\rm OE}_{\rm AB}$

74ALVC16501

DC CHARACTERISTICS FOR 74ALVC16501

For the DC characteristics see chapter "ALVC family characteristics", section "Family specifications".

AC CHARACTERISTICS FOR 74ALVC16501

 $GND = 0 V; t_r = t_i = 2.5 ns; C_i = 50 pF$

			T _{amb} (°C)			TEST CONDITIONS	
SYMBOL	PARAMETER	-40 to +85			UNIT	V _{cc}	WAVEFORMS
		MIN.	TYP.	MAX.		(V)	WAVEFORMS
	propagation delay	-	-	_		1.2	Fig. 6
t _{PHL} /t _{PLH}	A ₀ to B ₀ , B ₀ to A ₀	-	-	4.8	ns	2.7	
	A _n to B _n , B _n to A _n	-	3.0*	4.4	1	3.0 to 3.6	
	propagation delay LE _{BA} to A _n , LE _{AB} to B _n	-	-	-		1.2	
t _{PHL} /t _{PLH}		_	-	6.0	ns 2.7 3.0 to 3.6		
		-	3.2*	5.4		3.0 to 3.6	Fig. 7
	propagation delay CP _{BA} to A _n , CP _{AB} to B _n	_	-	-		1.2	
t _{PHL} /t _{PLH}		-	_	6.0	ns 2.7 3.0 to 3.6		
		-	3.2*	5.4		3.0 to 3.6	
	3-state output enable time OE _{BA} to A _n , OE _{AB} to B _n	-	-	-		1.2	Eia O
t _{PZH} /t _{PZL}		-	-	6.1	ns	2.7	
		-	-	5.5		3.0 to 3.6	
t _{PHZ} /t _{PLZ}	3-state output disable time OE _{BA} to A _n , OE _{AB} to B _n	-	-	-		1.2	Fig. 8
		-		6.1	ns	2.7	}
		_	-	5.5		3.0 to 3.6	

	PARAMETER		T _{amb} (°C)			UNIT	TEST CONDITIONS	
SYMBOL			-40 to +85				V _{cc}	WAVEFORMS
				TYP.	MAX.	1	(V)	WAVEIONING
t _w	LE pulse width, LE _{AB} or LE _{BA} HIGH		_ 2.5		_	ns	1.2 2.7 to 3.6	Fig.7
l w	LE pulse width, CP _{AB} or CP _{BA} HIGH or LOW		- 2.5	-	-		1.2 2.7 to 3.6	
t _{su}	set–up time, A _n before CP _{AB} ↓		- 3	-	_	ns	1.2 2.7 to 3.6	
	set–up time, B _n before CP _{AB} ↓		_ 3	-	-		1.2 2.7 to 3.6	
	A _n before LE _{AB} ↓ or	CP high	_ 1.5	_	_		1.2 2.7 to 3.6	Fig.9
		CP low	- 1.5	-	-		1.2 2.7 to 3.6	Ĭ
t _n	hold time, A_n after $CP_{AB} \downarrow$ or B_n before $CP_{AB} \downarrow$		- 0	_	- -	ns	1.2 2.7 to 3.6	
	hold time, A _n after $LE_{AB} \downarrow$ or B _n before $LE_{BA} \downarrow$	-	- 1	_	-		1.2 2.7 to 3.6	

Notes:

All typical values are measured at T_{amb} = 25 °C. * Typical values are measured at V_{CC} = 3.3 V.

AC WAVEFORMS

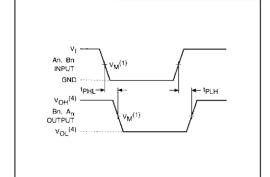


Fig.6 Waveforms showing the input (A_n, B_n) to output (B_n, A_n) propagation delays.

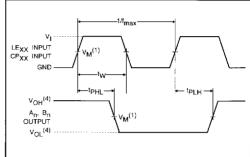


Fig.7 Waveforms showing the latch enable input (E_{AB}, LE_{BA}) and clock pulse input (CP_{AB}, CP_{BA}) to output propagation delays and their pulse width.

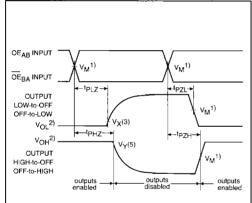


Fig.8 Waveforms showing the 3-state enable and disable times

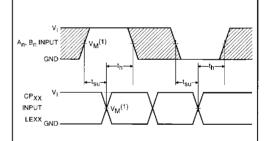


Fig.9 Waveforms showing the data set-up and hold times for the A_n and B_n inputs to the LE_{AB} , LE_{BA} , CP_{AB} and CP_{AB} inputs.

The shaded areas indicate when the input is permitted to change for predictable output performance.

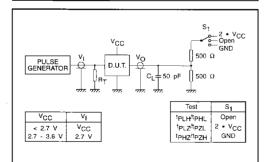


Fig.10 Load circuitry for switching times.

- **Notes:** (1) $V_M = 1.5 \text{ V at } V_{CC} \ge 2.7 \text{ V}$
 - $V_{M} = 0.5 \cdot V_{CC} \text{ at } V_{CC} < 2.7 \text{ V}$ (2) $V_{X} = V_{OL} + 0.3 \text{ V at } V_{CC} \ge 2.7 \text{ V}$
 - $V_X = V_{OL} + 0.1 \cdot V_{CC}$ at $V_{CC} < 2.7 \text{ V}$ (3) $V_{V} = V_{OV} - 0.3 \text{ V}$ at $V_{CC} < 2.7 \text{ V}$
 - (3) $V_Y = V_{OH} 0.3 \text{ V at } V_{CC} \ge 2.7 \text{ V}$ $V_Y = V_{OH} - 0.1 \cdot V_{CC} \text{ at } V_{CC} < 2.7 \text{ V}$
 - (4) V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.