18-Bit Universal bus transceiver; 3-state # 74ALVC16501 #### **FEATURES** - Wide supply voltage range of 1.2 V to 3.6 V - In accordance with JEDEC standard no. 8-1A. - · CMOS low power consumption - Direct interface with TTL levels - Univeral bus transceiver with D-type latches and D-type Flip-flops capabable of operating in transparant, latched or clocked mode. - All inputs have bushold circuitry - Output drive capability 50Ω transmission lines @ 85 °C - 3-state non-inverting outputs for bus oriented applications #### DESCRIPTION The 74ALVC16501 is an 18-bit universal bus transceiver. Data flow in each direction is controlled by output enable (OEAR, \overline{OE}_{BA}), latch-enable (LE_{AB}, LE_{BA}) and clock inputs (CPAB, CPBA). When LEAB is HIGH, the A-B dataflow is transparant. When LE_{AB} is LOW, and CPAB is held at LOW or HIGH, the A data is latched; on the LOW-to-HIGH transition of CPAR the A-data is stored in the latch/flip-flop. The outputs are active when OEAB is HIGH. When OEAR is LOW the B-outputs are in 3-state. Similarly, the LE_{BA} , \overline{OE}_{BA} and CP_{BA} control the B-to-A dataflow. Please note that both output enables are complementary: OEAB is active HIGH, \overline{OE}_{BA} is active LOW. #### **QUICK REFERENCE DATA** $GND \approx 0 \text{ V}; T_{amb} = 25 \text{ °C}; t_r = t_f = 2.5 \text{ ns}$ | SYMBOL | PARAMETER | CONDITIONS | TYPICAL | UNIT | |------------------------------------|---|--|------------|------| | t _{PHL} /t _{PLH} | propagation delay
A _n to B _n ;
LE _{AB} to A _n | $C_L = 50 \text{ pF}$ $V_{CC} = 3.3 \text{ V}$ | 3.0
3.2 | ns | | Cı | input capacitance | | 5.0 | рF | | C _{I/O} | input/output capacitance | | 10 | рF | | C _{PD} | power dissipation capacitance per latch | notes 1 and 2 | 22 | рF | ### Notes to the quick reference data - 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W): $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where: - f_i = input frequency in MHz; C_L = output load capacity in pF; f_o = output frequency in MHz; V_{CC} = supply voltage in V; - $\Sigma (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs.}$ - 2. The condition is $V_1 = GND$ to V_{CC} . #### ORDERING INFORMATION | TYPE NUMBER | PACKAGES | | | | | | | | |----------------|----------|---------|----------|----------------|--|--|--|--| | I THE NUMBER | PINS | PACKAGE | MATERIAL | CODE | | | | | | 74ALVC16501DL | 56 | SSOP56 | plastic | SSOP56/SOT371 | | | | | | 74ALVC16501DGG | 56 | TSSOP56 | plastic | TSSOP56/SOT364 | | | | | #### **PINNING** | PIN NO. | SYMBOL | NAME AND FUNCTION | |--|-----------------------------------|---------------------------------| | 1 | ŌE _{AB} | output enable A-to-B | | 2 | LE _{AB} | latch enable A-to-B | | 3, 5, 6, 8, 9, 10, 12,
13, 14, 15, 16, 17, 19,
20, 21, 23, 24, 26 | A _o to A ₁₇ | 'A' data inputs/outputs | | 4, 11, 18, 25, 29, 32, 39, 46, 53, 56 | GND | ground (0 V) | | 7, 22, 35, 50 | N ^{CC} | positive supply voltage | | 27 | OE _{BA} | output enable B-to-A | | 28 | LE _{BA} | latch enable B-to-A | | 30 | CP _{BA} | clock input B-to-A, HIGH-to-LOW | | 54, 52, 51, 49, 48, 47,
45, 44, 43, 42, 41, 40,
38, 37, 36, 34, 33, 31 | B _o to B ₁₇ | 'B' data inputs/outputs | | 55 | CP _{AB} | clock input A-to-B, HIGH-to-LOW | # **FUNCTION TABLE** | | INP | UTS | OUTPUTS | STATUS | | |---------------------|------------------|------------------|---------|-----------|------------------| | OE _{AB} 1) | LE _{xx} | CP _{xx} | DATA | 0011013 | L | | L | Х | Х | Х | Z | Disabled | | H | Ħ | X
X | I -J | ΗL | Transparant | | L
L | L | ↑ | h
I | Z
Z | Disabled + latch | | H | L | <u></u> | h
I | H | Latch + display | | H
H | L
L | L
H | X | NC
NC1 | Hold | XX = AB for A-to-B direction, BA for B-to-A direction H = HIGH voltage levelL = LOW voltage level h = High state must be present one setup time before the low-to-high transition of CP = Low state must be present one setup time before the low-to-high transition of CP X = Don't care 1 = LOW-to-HIGH level transition NC = No change $NC1 = No change provided that CP was LOW before LE_{xx} went low$ Z = High impedance "off" state $^{^{1)}}$ For the B-to-A direcion $\overline{\rm OE}_{\rm BA}$ is the inverse of ${\rm OE}_{\rm AB}$ 74ALVC16501 # **DC CHARACTERISTICS FOR 74ALVC16501** For the DC characteristics see chapter "ALVC family characteristics", section "Family specifications". # **AC CHARACTERISTICS FOR 74ALVC16501** $GND = 0 V; t_r = t_i = 2.5 ns; C_i = 50 pF$ | | | | T _{amb} (°C) | | | TEST CONDITIONS | | |------------------------------------|--|------------|-----------------------|------|----------------------|-----------------|-----------| | SYMBOL | PARAMETER | -40 to +85 | | | UNIT | V _{cc} | WAVEFORMS | | | | MIN. | TYP. | MAX. | | (V) | WAVEFORMS | | | propagation delay | - | - | _ | | 1.2 | Fig. 6 | | t _{PHL} /t _{PLH} | A ₀ to B ₀ , B ₀ to A ₀ | - | - | 4.8 | ns | 2.7 | | | | A _n to B _n , B _n to A _n | - | 3.0* | 4.4 | 1 | 3.0 to 3.6 | | | | propagation delay
LE _{BA} to A _n , LE _{AB} to B _n | - | - | - | | 1.2 | | | t _{PHL} /t _{PLH} | | _ | - | 6.0 | ns 2.7
3.0 to 3.6 | | | | | | - | 3.2* | 5.4 | | 3.0 to 3.6 | Fig. 7 | | | propagation delay
CP _{BA} to A _n , CP _{AB} to B _n | _ | - | - | | 1.2 | | | t _{PHL} /t _{PLH} | | - | _ | 6.0 | ns 2.7
3.0 to 3.6 | | | | | | - | 3.2* | 5.4 | | 3.0 to 3.6 | | | | 3-state output enable time
OE _{BA} to A _n , OE _{AB} to B _n | - | - | - | | 1.2 | Eia O | | t _{PZH} /t _{PZL} | | - | - | 6.1 | ns | 2.7 | | | | | - | - | 5.5 | | 3.0 to 3.6 | | | t _{PHZ} /t _{PLZ} | 3-state output disable time
OE _{BA} to A _n , OE _{AB} to B _n | - | - | - | | 1.2 | Fig. 8 | | | | - | | 6.1 | ns | 2.7 | } | | | | _ | - | 5.5 | | 3.0 to 3.6 | | | | PARAMETER | | T _{amb} (°C) | | | UNIT | TEST CONDITIONS | | |-----------------|---|---------|-----------------------|------|--------------|------|-------------------|------------| | SYMBOL | | | -40 to +85 | | | | V _{cc} | WAVEFORMS | | | | | | TYP. | MAX. | 1 | (V) | WAVEIONING | | t _w | LE pulse width,
LE _{AB} or LE _{BA} HIGH | | _
2.5 | | _ | ns | 1.2
2.7 to 3.6 | Fig.7 | | l w | LE pulse width,
CP _{AB} or CP _{BA} HIGH or LOW | | -
2.5 | - | - | | 1.2
2.7 to 3.6 | | | t _{su} | set–up time,
A _n before CP _{AB} ↓ | | -
3 | - | _ | ns | 1.2
2.7 to 3.6 | | | | set–up time,
B _n before CP _{AB} ↓ | | _
3 | - | - | | 1.2
2.7 to 3.6 | | | | A _n before LE _{AB} ↓ or | CP high | _
1.5 | _ | _ | | 1.2
2.7 to 3.6 | Fig.9 | | | | CP low | -
1.5 | - | - | | 1.2
2.7 to 3.6 | Ĭ | | t _n | hold time,
A_n after $CP_{AB} \downarrow$ or B_n before $CP_{AB} \downarrow$ | | -
0 | _ | -
 - | ns | 1.2
2.7 to 3.6 | | | | hold time,
A _n after $LE_{AB} \downarrow$ or B _n before $LE_{BA} \downarrow$ | - | -
1 | _ | - | | 1.2
2.7 to 3.6 | | Notes: All typical values are measured at T_{amb} = 25 °C. * Typical values are measured at V_{CC} = 3.3 V. #### **AC WAVEFORMS** Fig.6 Waveforms showing the input (A_n, B_n) to output (B_n, A_n) propagation delays. Fig.7 Waveforms showing the latch enable input (E_{AB}, LE_{BA}) and clock pulse input (CP_{AB}, CP_{BA}) to output propagation delays and their pulse width. Fig.8 Waveforms showing the 3-state enable and disable times Fig.9 Waveforms showing the data set-up and hold times for the A_n and B_n inputs to the LE_{AB} , LE_{BA} , CP_{AB} and CP_{AB} inputs. The shaded areas indicate when the input is permitted to change for predictable output performance. Fig.10 Load circuitry for switching times. - **Notes:** (1) $V_M = 1.5 \text{ V at } V_{CC} \ge 2.7 \text{ V}$ - $V_{M} = 0.5 \cdot V_{CC} \text{ at } V_{CC} < 2.7 \text{ V}$ (2) $V_{X} = V_{OL} + 0.3 \text{ V at } V_{CC} \ge 2.7 \text{ V}$ - $V_X = V_{OL} + 0.1 \cdot V_{CC}$ at $V_{CC} < 2.7 \text{ V}$ (3) $V_{V} = V_{OV} - 0.3 \text{ V}$ at $V_{CC} < 2.7 \text{ V}$ - (3) $V_Y = V_{OH} 0.3 \text{ V at } V_{CC} \ge 2.7 \text{ V}$ $V_Y = V_{OH} - 0.1 \cdot V_{CC} \text{ at } V_{CC} < 2.7 \text{ V}$ - (4) V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.