ADVANCE INFORMATION

74LVT16500 3.3V ABT 18-Bit Universal Bus Transceivers with TRI-STATE® Outputs

General Description

The LVT16500 consist of eighteen universal bus transceivers combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A bus data is stored in the latch/flip-flop on the high-to-low transition of CLKAB. Output-enable OEAB is active-high. When OEAB is high, the outputs are active. When OEAB is low, the outputs are in the high-impedance state.

Data flow for B to A is similar to that of A to B but uses OEBA, LEBA, and CLKBA. The output enables are complementary (OEAB is active high and OEBA is active low).

The transceivers are designed for low-voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V environment. The LVT16500 is fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining a low power dissipation.

Features

- Input and output interface capability to systems at 5V VCC
- Bus-Hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading
- Outputs source/sink -32 mA/+64 mA
- Available in SSOP and TSSOP
- Functionally compatible with the 74 series 16500
- Latch-up performance exceeds 500 mA

Pin Description

Pin Names	Description		
A ₀ -A ₁₇	Data Register A Inputs/TRI-STATE Outputs		
B ₀ -B ₁₇	Data Register B Inputs/TRI-STATE Outputs		
CLKAB, CLKBA	Clock Pulse Inputs		
LEAB, LEBA	Latch Enable Inputs		
OEAB, OEBA	Output Enable Inputs		

	SSOP EIAJ	TSSOP
Order Number	74LVT16500MEA 74LVT16500MEAX	74LVT16500MTD 74LVT16500MTDX
NS Package Number	MS56A	MTD56

Connection Diagram

Pin Assignment for SSOP and TSSOP

TL/F/12447-1

Logic Diagram

Function Table†

	Inpu	uts		Output
OEAB	LEAB	CLKAB	Α	В
L	Х	Х	Х	Z
H	Н	X	L	L
н	Н	×	Н	н
Н	Ĺ	1	L	Ĺ
н	L	1	Н	н
Н	L	Н	Х	B ₀ ‡
Н	L	L	X	B ₀ ‡ B ₀ §

- † A-to-B data flow is shown: B-to-A flow is similar but uses $\overline{\text{OEBA}}$, LEBA, and $\overline{\text{CLKBA}}$.
- $\ensuremath{\mathtt{T}}$ Output level before the indicated steady-state input conditions were established.
- \$ Output level before the indicated steady-state input conditions were established, provided that $\overline{\text{CLKAB}}$ was low before LEAB went low.