

SANYO Semiconductors DATA SHEET

LA6220AM—

Monolithic Linear IC

Rail-to-Rail Dual Operational Amplifier for Automotive Applications

Overview

The LA6220AM dual operational amplifier is optimal for both consumer and industrial applications, including all types of transducer amplifier and DC amplifier circuit. It supports from ground to V_{CC} (rail to rail) as the voltage range for both inputs and outputs and is a high-performance dual operational amplifier that features the wide operating temperature range of -40 to +125°C. It is optimal for the amplification of signals from all types of sensors.

Features

- Does not require phase compensation
- Supports from ground to VCC (rail to rail) as the voltage range for both inputs and outputs
- Low current dissipation : I_{CC} = 1.2mA typ/ V_{CC} = +5V, R_L = ∞

Specifications

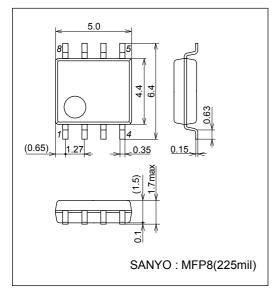
Maximum Ratings at Ta = -40°C to +125°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum Supply Voltage	V _{CC} max		18	V
Differential Input Voltage	V _{ID}		±1	V
Maximum Input Voltage	V _{IN} max		-0.3 to +18	V
Operating Temperature	Topr		-40 to +125	°C
Storage Temperature	Tstg		-55 to +150	°C

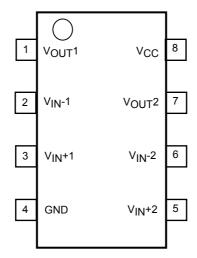
Recommended Operating Conditions at $Ta = -40^{\circ}C$ to $+125^{\circ}C$

Parameter	Symbol Conditions	Conditions	Ratings			
		Conditions	min	typ	max	unit
Supply Voltage	VCC		2		17	V

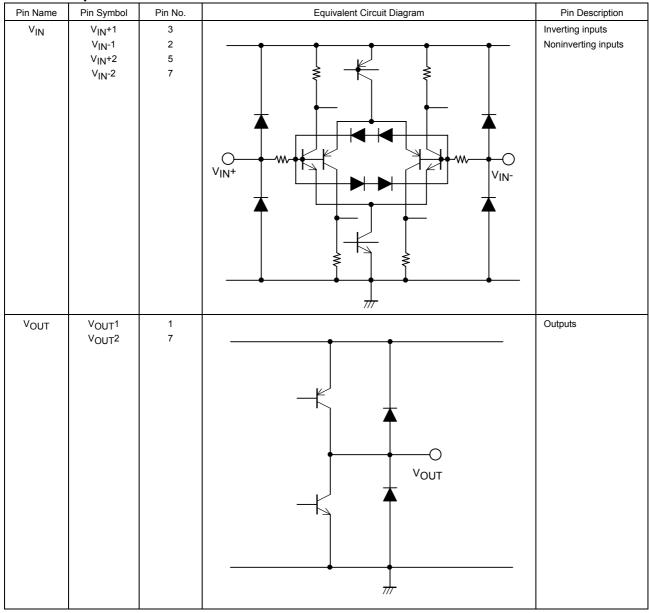
- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.


LA6220AM

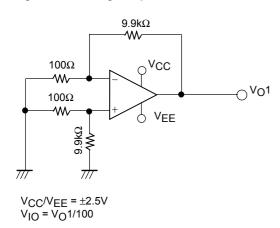
Electrical Characteristics at Ta = -40 °C to +125 °C, $V_{CC} = 5V$, (Otherwise unless specified.)


Parameter	Symbol	Conditions	Test	Ratings			
			Circuit	min	typ	max	unit
Input Offset Voltage	V _{IO}		1		±2	±7	mV
Input Offset Current	I _{IO}	I _{IN} (+)/I _{IN} (-)	2		±5	±50	nA
Input Bias Current	IB	I _{IN} (+)/I _{IN} (-)	3,4		45	250	nA
Common-Mode Input Voltage Range	VICM		5	0		VCC	٧
Common-Mode Rejection Ration	CMR		5		80		dB
Large Amplitude Voltage Gain	VG		6		100		V/mV
Output Voltage Range	V _{OH} 1A	R _L = 20kΩ: Ta = 25°C	12	4.9			V
	V _{OH} 1B	R _L = 20kΩ: Ta = -40 to 125°C	12	4.85			V
	V _{OL} 1	$R_L = 20k\Omega$	12			0.1	V
Output Voltage Range	V _{OH} 2	$R_L = 2k\Omega$	12	4.75			V
	V _{OL} 2	$R_L = 2k\Omega$	12			0.25	V
Supply Voltage Rejection Ratio	SVR		11		80		dB
Channel Separation		f = 1kHz to 20kHz	7		80		dB
Current Drain	Icc		8		1.2	2.5	mA
Output Current (Source)	I _O source	V _{IN} + = 1V, V _{IN} - = 0V	9	6	10		mA
Output Current (Sink)	I _O sink	V _{IN} + = 0V, V _{IN} - = 1V	10	3	5		mA
Slew Rate	SR	$R_L = 2k\Omega$			0.35		V/μs
Gain-Bandwidth Product	Ft	$R_L = 2k\Omega$			1		MHz
Phase Margin	ΦМ	$R_L = 2k\Omega$			80		Deg

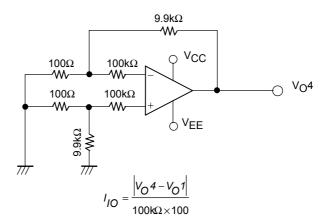
Package Dimensions

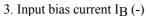

unit : mm 3032D

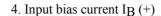
Pin Assignment

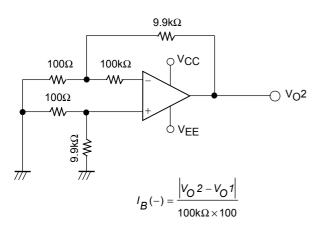


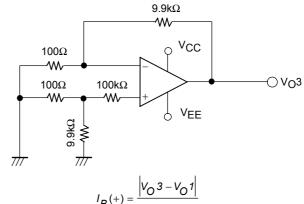
Pin Description

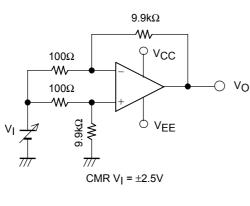


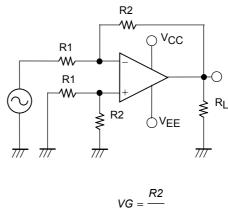

Test Circuits


1. Input offset voltage V_{IO}



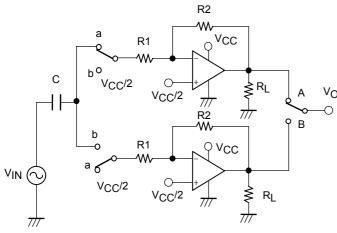

2. Input offset current I_{IO}

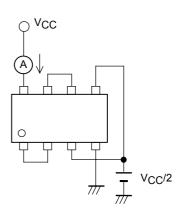




5. Common-mode rejection ratio (CMR) Common-mode input voltage range (VICM)

6. Voltage gain (VG)

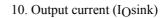

CMR =
$$20\log(5 \times 100/|\Delta V_{O}|)$$

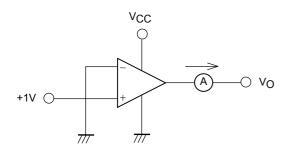


$$VG = \frac{R2}{R1}$$

7. Channel separation (CS)

8. Current drain (ICC)

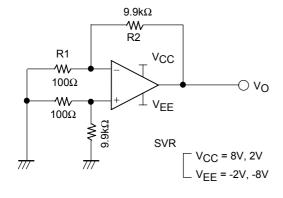

When the switch is in the "a" position.

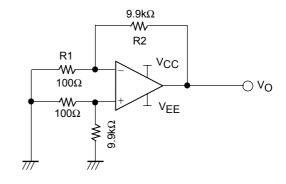

$$CS(A \longrightarrow B) = 20log \frac{R2V_{OA}}{R1V_{OB}}$$

When the switch is in the "b" position.

$$CS(B \longrightarrow A) = 20log \frac{R2VOB}{R1VOA}$$

9. Output current (IOsource)





11. Supply voltage rejection ratio SVR (+)

12. Supply voltage rejection ratio SVR (-)

$$SVR(+) = 20log \frac{\Delta V_{CC} \times 100}{\Delta V_{O}}$$

$$SVR(-) = 20log \frac{\Delta V_{EE} \times 100}{\Delta V_{O}}$$

13. Output voltage range (Isink)

14. Output voltage range (Isource)

$$\begin{array}{c|c} V_{CC} \\ \hline & 2k\Omega \\ 20k\Omega \\ \hline & W \\ \hline & V_{CC}/2 \\ \hline & V \\ \hline & V \\ \hline \end{array}$$

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 2006. Specifications and information herein are subject to change without notice.