QuickSwitch® Products # High-Speed CMOS QuickSwitch 32:16 Mux/Demux With 50Ω Damping Resistor #### FEATURES/BENEFITS - Enhanced N channel FET with no inherent diode to V_{CC} - Bidirectional switches connect inputs to outputs - · Zero propagation delay, zero ground bounce - · TTL-compatible input and output levels - Undershoot clamp diodes on all switch and control pins - · Available in 56-pin SSOP and TSSOP # **APPLICATIONS** - · Video, audio, graphics switching, muxing - · Hot-swapping, hot-docking - Voltage translation (5V to 3.3V) - · Noise, charge sharing, ground bounce reduction - Bus funneling #### **DESCRIPTION** The QS3165233 a 32-bit to 16-bit high-speed CMOS, TTL-compatible switch which can multiplex or demultiplex data. It can be used for memory interleaving where two memory banks need to be addressed simultaneously. It can also be used as two 16-bit to 8-bit multiplexers or as one 32-bit to 16-bit multiplexer. SELn inputs control the data flow. TESTn inputs control either one or two ports connection. The QS3165233 adds an internal 50Ω series termination resistor to each switch to reduce reflection noise in high-speed applications. Mux/Demux devices provide an order of magnitude faster speed than equivalent logic devices. Figure 1. Functional Block Diagram **Table 1. Pin Description** | Name | I/O | Function | |-----------------------------------|-------------|-------------| | nA | A I/O Bus A | | | nB ₁ , nB ₂ | I/O | Bus B | | SEL1, SEL2 | 1 | Data select | | TEST1, TEST2 | I | Port select | ### **Table 2. Function Table** n = 1 through 8 | SEL1 | TEST1 | nA | Function | |------|-------|-----------------------------------|---| | L | L | nB ₁ | nA to nB ₁ | | Н | L | nB ₂ | nA to nB ₂ | | Χ | Н | nB ₁ , nB ₂ | nA to nB ₁ and nB ₂ | # n = 9 through 16 | SEL2 | TEST2 | nA | Function | |------|-------|-----------------------------------|---| | L | L | nB ₁ | nA to nB ₁ | | Н | L | nB ₂ | nA to nB ₂ | | Х | Н | nB ₁ , nB ₂ | nA to nB ₁ and nB ₂ | # Figure 2. Pin Configuration (All Pins Top View) SSOP(PV), TSSOP(PA) # **Table 3. Absolute Maximum Ratings** | Supply Voltage to Ground | –0.5V to 7.0V | |--|---------------| | DC Switch Voltage V _S | –0.5V to 7.0V | | DC Input Voltage V _{IN} | –0.5V to 7.0V | | AC Input Voltage (for a pulse width ≤ 20ns) | | | DC Output Current Max. Sink Current/Pin | 120mA | | Maximum Power Dissipation At $T_A = 85$ °C, SSOP | 0.93 watts | | TSSOP | 0.77 watts | | T _{STG} Storage Temperature | –65° to 150°C | | | | Note: ABSOLUTE MAXIMUM CONTINUOUS RATINGS are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum conditions is not implied. # **Table 4. Capacitance** $T_A = 25^{\circ}C$, f = 1MHz, $V_{IN} = 0V$, $V_{OUT} = 0V$ | | | SSOP/TSSOP | | | |----------------------|-------|------------|------|------| | Pins | | Тур | Max | Unit | | Control Inputs | | 5.0 | 5.5 | pF | | QuickSwitch Channels | Mux | 8.5 | 10.0 | pF | | (Switch OFF) | Demux | 6.0 | 7.0 | pF | **Note:** Capacitance is guaranteed, but not tested. For total capacitance while the switch is ON, please see Section 1 under "Input and Switch Capacitance." **Table 5. DC Electrical Characteristics Over Operating Range** $T_A = -40^{\circ} C$ to 85°C, $V_{CC} = 5.0 V \pm 10\%$ | Symbol | Parameter | Test Conditions | Min | Typ ⁽¹⁾ | Max | Unit | |--|--------------------------|---|-----|--------------------|-----|------| | V _{IH} | Input HIGH Voltage | Guaranteed Logic HIGH for Control Inputs | 2.0 | _ | _ | V | | V_{IL} | Input LOW Voltage | Guaranteed Logic LOW for Control Inputs | _ | _ | 8.0 | ٧ | | I _{IN} Input Leakage Current (Control Inputs) | | $0 \le V_{IN} \le V_{CC}$ | _ | _ | 1 | μΑ | | I _{oz} | Off-State Current (Hi-Z) | $0 \le V_{OUT} \le V_{CC}$ | _ | _ | 1 | μΑ | | R _{ON} | Switch ON Resistance(2) | $V_{CC} = Min., V_{IN} = 0.0V$ $I_{ON} = 30mA$ | 35 | 50 | 70 | Ω | | | | $V_{CC} = Min., V_{IN} = 2.4V$
$I_{ON} = 15mA$ | 35 | 55 | 75 | Ω | | V_{P} | Pass Voltage(3) | $V_{IN} = V_{CC} = 5V$, $I_{OUT} = -5\mu A$ | 3.7 | 4 | 4.2 | V | #### Notes - 1. Typical values indicate $V_{\rm CC}$ = 5.0V and $T_{\rm A}$ = 25°C. - 2. For a diagram explaining the procedure for R_{ON} measurement, please see Section 1 under "DC Electrical Characteristics." Max. value of R_{ON} guaranteed, but not production tested. - 3. Pass voltage is guaranteed, but not production tested. Figure 3. Typical ON Resistance vs. V_{IN} at $V_{CC} = 5.0V$ # Table 6. Power Supply Characteristics Over Operating Range $T_A = -40$ °C to 85°C, $V_{CC} = 5.0V \pm 10$ % | Symbol | Parameter | Test Conditions ⁽¹⁾ | Max | Unit | |------------------|--|---|------|------------| | I _{ccq} | Quiescent Power
Supply Current | $V_{CC} = Max., V_{IN} = GND \text{ or } V_{CC}, f = 0$ | 3.0 | μΑ | | Δl _{CC} | Power Supply Current
Per Control Input HIGH(2) | $V_{CC} = Max., V_{IN} = 3.4V, f = 0$ | 1.5 | mA | | Q _{CCD} | Dynamic Power Supply
Current per MHz ⁽³⁾ | V _{CC} = Max., A and B Pins Open,
Control Input Toggling @ 50% Duty Cycle | 0.25 | mA/
MHz | #### Notes: - 1. For conditions shown as Min. or Max., use the appropriate values specified under DC specifications. - 2. Per TTL driven inputs ($V_{IN} = 3.4V$). A and B pins do not contribute to ΔI_{CC} . - 3. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is guaranteed, but not production tested. # **Table 7. Switching Characteristics Over Operating Range** | | Table 7. Switching Characteristics Over Operating Range $T_A = -40$ °C to 85°C, $V_{CC} = 5.0V \pm 10\%$ $C_{LOAD} = 50$ pF, $R_{LOAD} = 500$ Ω unless otherwise noted. | | | | | | | | | | |---|---|--|-----|---|--------------------|------|--|--|--|--| | Symbol Description ⁽¹⁾ Min Typ Max | | | | | | Unit | | | | | | | t _{PLH}
t _{PHL} | Data Propagation Delay(2,4)
nA to nBi, nBi to nA | _ | _ | 2.5 ⁽³⁾ | ns | | | | | | | t_{BX} | Switch Multiplex Delay
SEL to nA | 1.5 | _ | 7.5 | ns | | | | | | | t _{PZL}
t _{PZH} | Switch Turn-on Delay
SEL, TEST to nBi | 1.5 | | 7.5 | ns | | | | | | | t _{PLZ}
t _{PHZ} | Switch Turn-off Delay ⁽²⁾
SEL, TEST to nBi | 1.5 | | 5.8 | ns | | | | | #### Notes: - 1. See Test Circuit and Waveforms. Minimums guaranteed, but not production tested. - 2. This parameter is guaranteed, but not production tested. - 3. The time constant for the switch alone is of the order of 0.25ns for QS316233 and 1.25ns for QS3162233 at $C_1 = 50pF$. - 4. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.